

Structure and physiochemical properties		
Physiochemical properties relevant to hepatic uptake		
LogP (or logD _{7.4})	The higher the value of lipophilicity, the more likely a drug will have a high rate of passive diffusion and require one or more biotransformation reactions to be eliminated	
Polar surface area	If total PSA (TPSA) is 50 A^2 or less, the drug candidate will likely be completely absorbed, whereas if it's more than 150, none of it will be absorbed by passive diffusion.	
рКа	This determines how high the pH must be for anionic drugs (acids, tetrazoles, phenols) to be negatively charged and how low the pH must be for cationic (basic) drugs to be positively charged.	
		5

