SEKISUI XENOtech 25 Years

ADME | Drug-Drug Interaction | DMPK

Contract Research & Test System Expertise

Cell & Tissue-Based Products
Reaction Phenotyping
Enzyme Induction & Inhibition
Drug Transporters
Metabolite ID & Production
Screening
Pharmacokinetics & QWBA
Radiolabeling
Bioanalytical

www.xenotech.com
ADME 101:
DMPK and ADME in Drug Development

Joanna Barbara, Ph.D.
Vice President of Scientific Operations
Acronyms Abound: DMPK and ADME in Drug Development

Joanna Barbara, Ph.D.
VP of Scientific Operations
SEKISUI XenoTech
Overview

• Overarching aim of therapeutic drug development
• DMPK – Drug metabolism and pharmacokinetics
 • Based on ADME properties
 • Relates to DDI
• ADME properties
• A hint of DDI
Chemical Compound to Therapeutic Drug

- Aim: get a compound with therapeutic benefit into the form of a practical medicine that can be dosed to patients, considering
 - Safety
 - Efficacy

Chemical compound → Synthetic powder → Therapeutic drug

[Diagram showing the transformation of acetaminophen into Tylenol pills]
Developing Potential Therapies

• Biological targets related to a disease state are selected
• Target: existing cellular structure or molecule related to disease state
• Initial objective: find chemical compounds that will interact with the target, with the idea they will impact the disease state

• But the compounds must be appropriate for human consumption, reach the site of action, exert therapeutic effects, and then be eliminated from the body
• DMPK science explores how that can happen....
Receptor-Based Cancer Therapy

• Tyrosine kinases – enzymes involved in signaling to stimulate cell replication

• Cancer therapy
 • Tumor growth is impacted by cell proliferation

• Tyrosine kinase inhibitor therapies enter the cells and inhibit the kinases

But the inhibitor compounds have to get to the receptors

Drug Metabolism (DM) Vocabulary

• Conversion of the drug compound into other related compounds
• Result of interaction with Drug Metabolizing Enzymes (DMEs)
• The new compounds are Metabolites

Pharmacokinetics (PK)

• Sometimes defined as what the body does to the drug
• Commonly associated with the plasma concentration-time curve
ADME Properties

• Potential drugs need certain characteristics to become future therapies

• Compounds are evaluated for ADME/toxicology properties
 • Liberation
 • Absorption
 • Distribution
 • Metabolism
 • Excretion
 • Toxicology

 Compounds with ‘druggable’ characteristics have ADME properties appropriate to move into development

Disposition = A + D + M + E
Elimination = M + E
Absorption (Oral Drugs)

- Orally administered drugs are delivered to the gastrointestinal (GI) tract
- Compound has to be able to get into the bloodstream
- Biological barriers keep foreign substances out of cells
 - E.g., skin, cell membranes
- Affected by numerous characteristics
 - E.g., Solubility, dissolution, ionization, particle size, molecular size etc.
Oral vs. Intravenous Administration

Oral drugs traverse the gut and liver to get into the bloodstream.

Intravenous drugs go directly to the bloodstream.

There is no absorption phase.

Distribution

• Drug moves to site of action – via bloodstream

• Biological considerations
 • Vascularity – where the blood vessels go
 • Transport – passive or active
 • Blood/placental barriers
 • Plasma binding proteins

Metabolism

• The biochemical structural modification of a drug
• Often changes the chemical structure of a lipophilic compound to make it more hydrophilic (water-soluble) for elimination
• Often by DMEs in the liver; sometimes intestines, kidney etc.

Excretion

• Irreversible loss of drug from system
• Drug-related material (drug and metabolites) has to be cleared from the organism
• Commonly occurs through
 • Kidneys (renal) - urine
 • Liver (biliary) - bile/feces
 • Lungs (respiratory) - breath
 • Other – sweat, tears, saliva
Other Considerations

• Sometimes **liberation** and **toxicity** included in this (LADME/tox)

• Liberation is the release of the active substance from the delivery system, e.g., dissolution, disaggregation etc.

• Toxicity of a drug comprises drug-related side effects and adverse reactions/events caused by administration of a drug

• Toxicity is an important safety consideration for a potential new drugs in development
Compounds with desirable ADME properties

- Get into the bloodstream (L+A)
- Move from the bloodstream to the site of action (D)
- Remain unchanged long enough to be active and are converted to safe metabolites (M)
- Completely excreted in urine/feces/breath (E)
- Do not cause harm to the organ or system (Tox)
A Hint of Drug-Drug Interactions

- Drug-drug interactions – when a drug cause changes in the PK/ADME behaviors of a second coadministered drug
- Usually caused by a drug changing the available levels or activity of a DME or a drug transporter

Conclusions

• Drug development aims to turn compounds with impact on disease into viable therapies
• DMPK / ADME properties determine how that happens
• They also help predict DDI potential
www.xenotech.com
Featuring publications, posters, webinars and other useful resources.

Webinar Topic Request Form:
www.xenotech.com/scientific-resources/upcoming-webinars

Sekisui XenoTech’s Services & Products:

In Vitro ADME/PK & DDI
- Drug Transport
- Drug Metabolism
- Enzyme Inhibition & Induction
- Protein Binding
- Metabolite Identification
- ADME Screening

In Vivo ADME/PK & Distribution
- QWBA
- Microautoradiography
- Excretion / Mass Balance
- Tissue Distribution
- Blood / Plasma & Lymphatic Partition Rate

Bioanalytical Pharmacology
- In Vitro Ligand Binding & Radioreceptor Assays
- Immunoassays

Chemical Synthesis
- Radiolabeled Synthesis
- Metabolite Synthesis
- Peptide Synthesis

Consulting...

Cellular Products
- Hepatocytes (Cryop/Fresh, Genotyped...)
- Non-Parenchymal Cells (Kupffer Cells)

Subcellular Fractions
- Liver Microsomes
- S9 Fractions
- Cytosol
- Homogenate
- Lysosomes & Tritosomes
- Mitochondria
- Extrahepatic Fractions

Custom Products
- Various Species, Tissues & Preparations

Research Biobank
- Normal & Diseased Tissue Samples

Recombinant Enzymes

Substrates & Metabolites

JCRB Cell Lines...