
Figure 1.  Workflow for CYP induction screening studies

Introduction

Cytochrome P450 (CYP) enzymes play an important role in the oxidative 
metabolism of many drugs. Consequently, inhibition or induction of these 
enzymes by perpetrator drugs can result in alterations in the clearance of a 
victim drug that is metabolized by CYP pathways (i.e. drug-drug interactions; 
DDIs) [1]. The induction of CYP enzymes, which results in elevated CYP 
expression levels, can lead to an increase in the clearance of a victim drug 
resulting in potential loss of drug efficacy [2]. Thus, characterizing a new drug’s 
CYP induction potential early in drug development can lead to better and safer 
drug design. In the present study, we developed a rapid CYP induction screen 
evaluating up to 10 compounds in one assay (at three concentrations, with an 
additional positive control) with the fold change of CYP3A4 mRNA expression 
levels measured as an endpoint.

Chemicals and test systems
All chemicals used for treatments were purchased from Sigma-Aldrich (St.
Louis, MO) or Toronto Research Chemicals (Toronto, ON, Canada) and were
of analytical grade. The sources of all other reagents have been described 
previously [3]. Cryopreserved human hepatocytes (HC5-27) from a single donor 
were prepared from a non-transplantable liver and characterized at XenoTech, 
LLC (Lenexa, KS) as described previously [4, 5].

In vitro CYP induction screen
The typical workflow for the CYP induction screen is shown in Figure 1.

Treatments: Cryopreserved human hepatocytes from a non-transplantable 
single human liver donor were seeded and cultured in a collagen-Matrigel sand-
wich on 96-well plates at 37 ± 1°C (with 95 ± 5 % humidity and 5 ± 1 % CO2). 
Cells were allowed to adapt in culture for 24 hours or 48 hours after seeding 
and overlay, followed by a single treatment for 24 hours, in triplicate, with carba-
mazepine (1, 10, 100 µM), clobazam (1, 10, 50 µM), flumazenil (1, 10, 25 µM, 
non-inducer), nifedipine (1, 10, 100 µM), omeprazole (1, 10, 50 µM), phenytoin 
(1, 10, 40 µM), pioglitazone (1, 10, 50 µM), pleconaril (1, 10, 50 µM), rifampin 
(1, 5, 10, 20 µM), ritonavir (1, 10, 20 µM), rosiglitazone (1, 10, 50 µM), DMSO 
(0.1 % v/v; vehicle), or rifampin (up to 20 µM; positive control) in supplemented 
Modified Chee’s Medium (MCM+). This was repeated up to n = 4.

RNA isolation and qPCR: Twenty-four hours after treatment, cells were har-
vested with Buffer RLT (Qiagen) with β-mercaptoethanol for isolation on the 
KingFisher Flex (KFF; Thermo Scientific) with the MagMAX-96 for Microarrays 
kit (Ambion). RNA was quantified with the NanoDrop 8000 UV-Vis Spectropho-
tometer (Thermo Scientific). Reverse transcription was performed with the High 

Data were collected from two culture conditions; either with a 24-hour or a 
48-hour adaptation period after hepatocytes were initially seeded, overlaid and
treated with various compounds for 24 hours. The results (shown in Figure 2
and 3) demonstrated robust concentration-dependent CYP3A4 mRNA
induction. The highest level of induction for each compound was observed at
the highest concentration tested (with the exception of nifedipine and ritonavir
which plateaued at ≤ 10 µM). As expected, the non-inducer, flumazenil showed
little to no induction and served as a negative control. CYP3A4 mRNA fold
changes for each compound were substantially greater after a 24-hour
adaptation period (Figure 2) compared to plates with a 48-hour adaptation
period (Figure 3). This is likely due to cellular normalization of CYP transcript
levels over time. However with both adaptation periods, concentration-
dependent induction of all prototypical inducers was observed, indicating that
an additional 24-hour culture adaptation period (i.e. 48-hour adaptation) is not
required to identify potential CYP3A4 inducers.
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Conclusions

Results

• A 24-hour culture adaptation period was sufficient to screen for a potential
CYP3A4 mRNA inducer. Concentration-dependent induction was observed with
all known CYP3A4 inducers, demonstrating successful assay performance.

• Overall, the results of the assay with the compounds tested were as expected,
demonstrating the utility of this screen to rapidly and efficiently obtain CYP
induction data early in the drug development process.

Overview

• The purpose of this study was to develop a high content method to rapidly
screen compounds (10 compounds at three concentrations with an additional
positive control) for CYP3A4 induction (can be used for other CYPs as well).

• A single donor of primary human hepatocytes was evaluated for CYP3A4
inducibility after a 24-hour and a 48-hour culture adaptation period.

• Automated RNA isolation and qPCR were used to determine CYP3A4
mRNA expression levels.

• Negative and positive controls for CYP induction, including prototypical
CYP3A4 inducers, responded appropriately as either non-inducing or
inducing, respectively, with a 24-hour culture adaptation period followed
by a 24-hour treatment period.

• A 48-hour culture adaptation period was not required to determine which
compounds caused CYP3A4 mRNA induction.

Capacity cDNA Reverse Transcription kit (Life Technologies) on the 7900HT 
Real-Time PCR System (AB7900; Applied Biosystems). qRT-PCR was per-
formed in triplicate on the AB7900 and data were analyzed by the ΔΔCt method 
(Applied Biosystems User Bulletin #2). Relative quantification measured change 
relative to the DMSO and normalized to the endogenous control (GAPDH) for 
CYP3A4 mRNA expression. Data were reported through Galileo LIMS (Thermo 
Scientific) and Crystal reports 2013 (SAP Business Objects).

Figure 2.  Mean fold induction of CYP3A4 mRNA by a panel of known inducers with a
24-hour culture adaptation period followed by a 24-hour treatment period

Figure 3.  Mean fold induction of CYP3A4 mRNA by a panel of known inducers with
 a 48-hour culture adaptation period followed by a 24-hour treatment period
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