**XENOTECH** OVER 25 YEARS OF GLOBAL ADME / DMPK / DDI EXPERTISE A BiolVT Company

# Enzyme Induction Studies: Services Overview

Andrew G. Taylor, Ph.D. Manager, Technical Support for Services XenoTech



# Overview

• What is enzyme induction?

A BiolVT Company

- Why is measuring CYP (or other enzyme) induction important?
- Basic terminology
- Regulatory guidance & expectations
- Types of induction studies
- Typical study design (definitive vs. screening)
- Example results
- Considerations & questions we ask clients up front
- XenoTech products for induction

# **FDA Approval**

A BiolVT Company

# General mechanism of enzyme induction

A receptor-mediated response to xenobiotics (xenosensors)



A BiolVT Company

# **Induction DDI General Mechanism**



A BioIVT Company Terminology for Enzyme Induction



- EC<sub>50</sub>
  - Concentration of the drug that gives the half-maximal response
  - Conceptually similar to  $\mathrm{IC}_{\mathrm{50,}}$  but looking at response instead of inhibition
  - It is a concentration (e.g.,  $\mu$ M or mg/mL)

• E<sub>max</sub>

- "E" is the effect at drug concentration C
- E<sub>max</sub> is the maximal effect at high drug concentrations when all receptors are occupied by the drug
- It is fold change (compared to vehicle control)
- Prototypical Inducer
  - Compound known to induce a particular enzyme, a positive control (E.g., rifampin or phenobarbital → CYP3A4)

A BiolVT Company

# **Meeting Regulatory Expectations**

| Requirement                       | FDA (2020)                                                                                                                               | EMA (2013)                                                                                                         | XenoTech                                                                                                                                                                                                      |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test system<br>(number of donors) | Cryopreserved or fresh human hepatocytes<br>(other systems considered complimentary)<br>n ≥ 3                                            |                                                                                                                    | Cryopreserved human<br>hepatocytes ( <i>pre-characterized</i><br>with mild to strong clinical<br>CYP3A4 inducers)<br>or fresh human hepatocytes<br>$n \ge 3$                                                  |
| TA concentrations                 | Sufficient to reach Emax not<br>based on Cmax-ss total unbound                                                                           | 50x Cmax-ss unbound<br>or if orally dosed 1/10 <sup>th</sup><br>dose in 250 mL for<br>CYP3A4                       | 1/10 <sup>th</sup> dose in 250 mL or 50x<br>Cmax-ss total unbound, limit of in<br>vitro solubility or in toxicity,<br>includes Cmax-ss (and ideally<br>reaches Emax)<br>( <i>recommend 8 concentrations</i> ) |
| CYP emphasis                      | 1A2, 2B6, 3A4                                                                                                                            |                                                                                                                    | 1A2, 2B6, 3A4                                                                                                                                                                                                 |
| Controls                          | Negative: Not specified<br>CYP specific Positive:<br>Omeprazole (25-100 μM)<br><b>Phenobarbital</b> (500-1000 μM)<br>Rifampin (10-50 μM) | Negative: Not required<br>CYP specific Positive:<br>Omeprazole (50 μM)<br><b>CITCO</b> (100 nM)<br>Rifampin (20 μM | Vehicle: Test article specific<br>Negative: Flumazenil (25 μM)<br>CYP specific Positive:<br>Omeprazole (50 μM)<br><b>Phenobarbital</b> (750 μM)<br>Rifampin (20 μM)                                           |

A BiolVT Company

# Meeting Regulatory Expectations

| Requirement                    | FDA (2020)                                                                                                         | EMA (2013)                                  | XenoTech                                                                                                                                                            |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| End-point measurement          | mRNA                                                                                                               | mRNA<br>(activity if decreases<br>observed) | mRNA and activity                                                                                                                                                   |
| Positive induction<br>response | Unspecified                                                                                                        | 6-fold increase in mRNA                     | 6-fold increase in mRNA<br>(in pre-characterized cryopreserved<br>hepatocytes)                                                                                      |
| Concentration of TA in medium  | Yes, on last day of treatment to obtain C <sub>avg</sub> <b>OR</b><br>change medium at intervals to reduce TA loss |                                             | Spent media collection on last<br>day of treatment over 4 time<br>points<br>(analyzed by test article specific<br>LC/MS/MS method or stored for<br>future analysis) |

A BiolVT Company

# Meeting Regulatory Expectations

| Requirement                        | FDA (2020)                                                                                                         | EMA (2013)                                                                                                             | XenoTech                                                                                                                             |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Toxicity assays                    | Not specified                                                                                                      | Yes, at highest TA<br>concentration before<br>and after incubation<br>period                                           | Recommended                                                                                                                          |  |
|                                    |                                                                                                                    |                                                                                                                        | Lactate Dehydrogenase Release<br>(a measure of membrane<br>integrity) (daily evaluation)                                             |  |
|                                    |                                                                                                                    |                                                                                                                        | Reduction of Resazurin (a<br>measure of mitochondrial<br>respiration) (day of harvest)                                               |  |
| Individuals vs. Average            | Individual cultures, worst-case scenario                                                                           |                                                                                                                        |                                                                                                                                      |  |
| Methods for data<br>interpretation | <ul> <li>Basic models</li> <li>Mechanistic-static model<br/>(net effect)</li> <li>Dynamic models (PBPK)</li> </ul> | <ul> <li>Basic models</li> <li>Correlation methods (RIS)</li> <li>Mechanistic-static model<br/>(net effect)</li> </ul> | <ul> <li>Correlation methods (RIS, etc.)</li> <li>Basic models</li> <li>Dynamic models</li> <li>Mechanistic static models</li> </ul> |  |
| GLP-compliance                     | Not required<br>(spirit of GLP)                                                                                    | Not required                                                                                                           | Available on request<br>(Requires DSA)                                                                                               |  |

# Study Types

# Εχ νίνο

- Investigates induction in laboratory animals (rat, mouse, dog, monkey)
- Typically done following toxicology studies by the Sponsor as
   GLP multi-site study
- Animals usually dosed by Sponsor and liver samples sent to XenoTech
- Animals dosed with large amounts of test article

A BiolVT Company

- Microsomes or RNA from individual animals isolated from liver tissue
- Tecan assays for activity or qPCR for mRNA expression levels performed

# In vitro

Enzyme induction examined in cryopreserved, characterized hepatocytes

 Cultured hepatocytes treated with test article over 3 days in 60 mm dishes only

Small amounts of test article required

Hepatocytes from rat, dog, mouse, monkey and human have been used

- ■Microsomal activity (or In situ activity)
- Microsomes or RNA from treated hepatocytes
- Tecan assays for activity or qPCR for mRNA expression levels performed

### A BiolVT Company Definitive vs MTS EI Study Design

### Definitive El Study

- mRNA fold change for CYP1A2, 2B6 and 3A4 using qRT-PCR
- 3 lot hepatocytes, 72 hr treatment period (n = 3 biological replicates)
- 6-8 TA concentrations
- EC<sub>50</sub>/E<sub>max</sub> data
- Vehicle control, Negative control for induction, Multiple positive controls (1 concentration)
- Spent media analysis at multiple time points
- Full submission report

### Additional options:

- 2C8, 2C9 and 2C19 follow up (activity and/or mRNA)
- GLP dose solution analysis
- Pre induction study toxicity assessment

# Medium-Throughput Screening El <u>Study</u>

- mRNA fold change for CYP1A2, 2B6 and 3A4 using qRT-PCR
- 1 lot hepatocytes, 24 hr treatment period
- 3 TA concentrations (n = 3, pooled measured)
- Positive control included
- TA shipped in solution or as preweighed aliquots
- LDH
- Tabular data summary

A BiolVT Company

XENOTECH

# **Induction Example Data**



A BiolVT Company

# Induction EC<sub>50</sub> and E<sub>max</sub> Example Data



### A BiolVT Company

**XENOTECH** 

# **Induction Data Interpretation**

- Determine fold change compared to vehicle control
  - Did the test article cause a fold change in mRNA or activity levels of greater than 2fold?
  - Did the test article cause a response in mRNA or activity levels greater than 20% of the positive control?
  - Were the increases observed concentration dependent?
- If increases are observed, determine EC<sub>50</sub> and E<sub>max</sub> values for R<sub>3</sub> calculations (FDA 2020) – (requires I<sub>max-u</sub>)
- Alternatively, compare test article response to range of weak to strong inducers (Relative Induction Score – CYP3A4 only)



### A BiolVT Company Considerations and Questions for the Sponsor: In Vitro Studies

- TA specific considerations (solubility, binding, stability, molecular weight, molecule type, etc.)
- What question are you trying to answer? Just checking FDA boxes (human study) or anything other than human always good to know.
- FDA, EMA or both?
  - What do you plan to do with the data, plan on additional modeling, going to consultant, depend on us for interpretation? If using additional modeling (SimCYP for EMA) may suggest additional PC for induction. I.e., some clients may also want EC<sub>50</sub> of prototypical inducers in experimental design.

• C<sub>max-u</sub>, physiological relevant concentrations, Plasma Protein Binding

### A BiolVT Company Considerations and Questions for the Sponsor: Ex Vivo Studies

- What species
- Number of animals per sex
  - Pooled or individual
- Number of treatment groups
- GLP vs Non-GLP
- Multi-site work plan or protocol
- CYPs/UGT to be analyzed
- What question are they trying to answer

- Endpoints
  - mRNA, activity, Western Immunoblotting, ELISA—for activity WI and ELISA need 4-g liver tissue, mRNA only need ~150 mg
- CYP specific probe substrates preferred
- Do we have a preferred method of preparing the livers we do have a protocol to share? Yes!

### A BiolVT Company XenoTech Products (CYP/UGT Induction)

- Cryopreserved Attaching Primary Hepatocytes
  - Individual donors
    - >6-7 fold mRNA induction (CYP1A2, CYP2B6, and CYP3A4)
    - >2 fold activity induction
  - Pooled primary human donors (screening only)
  - Multiple small animal species
- Support Reagents
  - Hepatocyte media
    - Thaw, Plate, Incubate, and Culture

- Immortalized Hepatocytes (Fa2N-4)
  - CYP induction screening (not so popular anymore)
  - **Support Reagents** 
    - MFE Hepatocyte mediums



A BiolVT Company

# XenoTech Products (CYP/UGT Induction) Treated Animal Liver Subcellular Fractions

### Male Sprague-Dawley Rat

- β-Naphthoflavone CYP1A
- β-Naphthoflavone and
   Phenobarbital
   CYP1A & 2B

Control

Control

- Phenobarbital CYP2B
- Isoniazid CYP2E
- Dexamethasone CYP3A
- Clofibric acid
   CYP4A
- Saline
- Corn oil

- Male Beagle Dog
  - β-Naphthoflavone CYP1A
  - Phenobarbital CYP2B
  - Rifampin CYP3A
  - Clofibric acid CYP4A
  - Saline Control
  - Corn oil Control
- Male and Female Cynomolgus
  - β-Naphthoflavone
     CYP1A
  - Omeprazole
  - Phenobarbital CYP2A & 2B

CYP4A

CYP2E

CYP3A

Control

- Pyrazole
- Rifampin
- Saline

**XENOTECH** OVER 25 YEARS OF GLOBAL ADME / DMPK / DDI EXPERTISE A BiolVT Company

# Thank you for watching!

For questions get in touch through the Contact Us tab on our website or use our Products pages to find Research Biobank tissue preparations & microarrays currently available



A BiolVT Company

# *Ex vivo* versus *in vitro* enzyme induction

Animals treated in vivo Mice, **rats**, dogs and monkeys Livers shipped frozen to SXT (-80C, air tight) Liver microsomes and RNA lysates prepared CYP and UGT activities determined in vitro Western immunoblotting Spectral binding mRNA analysis

Hepatocytes plated in collagen sandwich configuration Human (Mice, rats, dogs, monkeys) Hepatocytes treated *in vitro* and harvested Microsomes from hepatocytes or RNA from hepatocytes prepared CYP and UGT activities determined in vitro Western immunoblotting **mRNA** analysis