

PROVEN GLOBAL CONTRACT RESEARCH EXPERTISE FROM DISCOVERY THROUGH CLINICAL SUPPORT

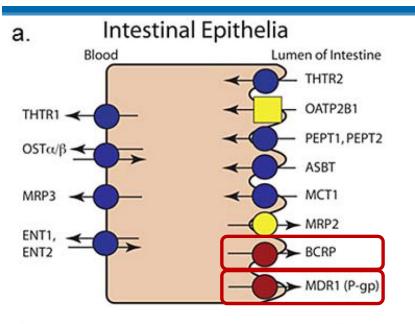
Transporters of Emerging Importance in Drug Development: Beyond the Guidance Documents

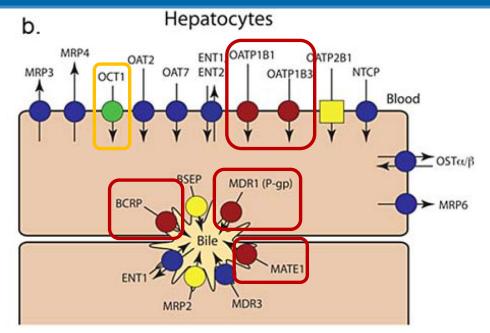
Brian Ogilvie, Ph.D.

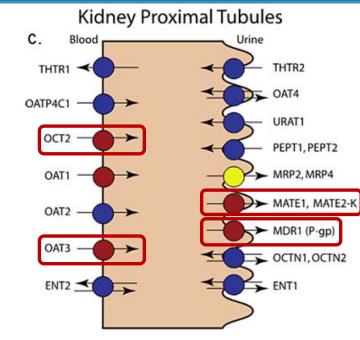
Vice President, Scientific Consulting bogilvie@xenotechllc.com

Outline

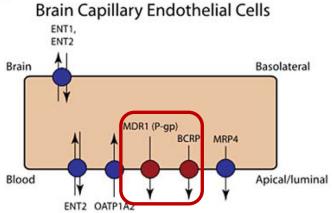
1. Regulatory view of in vitro transporter studies


2. The ECCS: Prediction of rate-determining step in ADCE


- 3. Evidence for emerging transporters:
 - OCT1
 - OATP2B1
 - OAT2


4. Unusual routes of administration

Current Regulatory view of in vitro transporter studies



d.

<u>Inhibition</u> for all in red (FDA & PMDA); orange (EMA)

Substrate potential:

P-gp and BCRP (all orally administered drugs)

Hepatic uptake: If hepatic metabolism or biliary secretion ≥25%

Renal: If active renal secretion ≥25% of total clearance

"Choice of transporters investigated should be driven by scientific

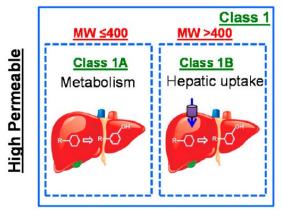
evidence ..."

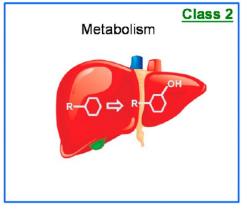
Figures from Zamek-Gliszczynski et al. ITC3 (2018) CPT 104:890-899

Timing of in vitro studies in the FDA guidance

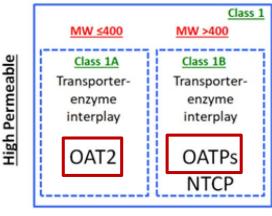
- Timing Work backwards from FDA clinical guidance
 - When are clinical DDI results needed?
 - Before administration to patients:
 - "collect enough DDI information to prevent patients from being unnecessarily excluded"
 - "Inadequate studies of DDIs can hinder the FDA's ability to determine the benefits and risks of [a] . . . drug and . . . result in restrictive labeling, [PMRs or PMCs], and/or delayed approval"

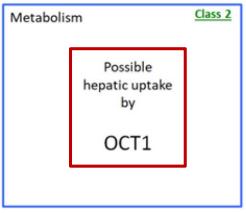
Choice of transporters investigated driven by scientific evidence XENG

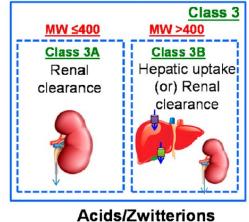


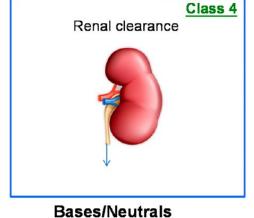

- ITC3 Recommendations based on the evidence (May 2018)
 - Hepatic OCT1: Prospective evaluation (inhibition and substrate potential)
 - Intestinal OATP2B1: Retrospective evaluation in "specific instances of DDIs or disposition otherwise unexplained by more common mechanisms"
 - MRP2 and 4 and BSEP: "previously recommended for retrospective mechanistic explanation of clinical observations"
- Honorable mention: OATP1A2, OATP4C1, OAT2, ASBT, OST α/β , NTCP, MDR3 "evidence is lacking for specific drug development recommendations"

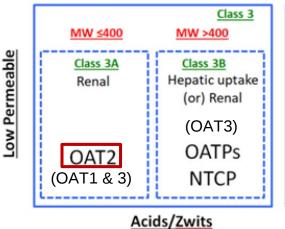
Extended Clearance Classification System (ECCS)

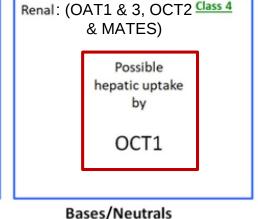



 Goals include earlier prediction of rate-determining step in human absorption, distribution, clearance and elimination (ADCE)

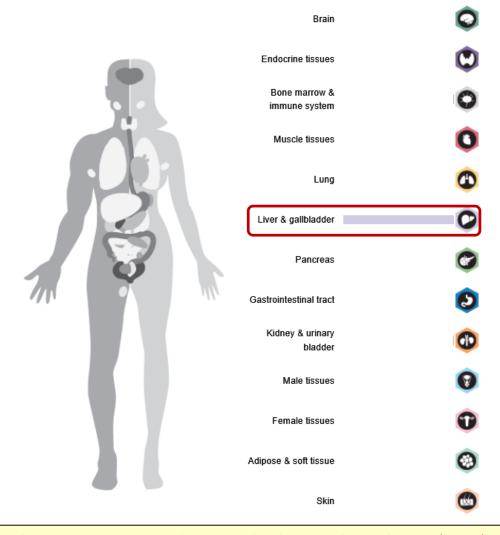








Low Permeable



OCT1 (SLC22A1) basics

- Most highly expressed OCT in human liver
- Sinusoidal
- Facilitative
- Highly polymorphic
- Transports weak bases:
 - Metformin
 - Fenoterol
 - Tropisetron and ondansetron
 - Ranitidine
 - O-Desmethyltramadol
 - Sumatriptan & other triptans

RNA expression (TPM)I

OCT1 (SLC22A1): Impacts of polymorphism on sumatriptan

OCT1 Mediates Hepatic Uptake of Sumatriptan and Loss-of-Function *OCT1* Polymorphisms Affect Sumatriptan Pharmacokinetics

J Matthaei¹, D Kuron¹, F Faltraco¹, T Knoch¹, JN Dos Santos Pereira¹, M Abu Abed¹, T Prukop¹, J Brockmöller¹ and MV Tzvetkov¹

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 99 NUMBER 6 | JUNE 2016

"OCT1 is a high-capacity transporter of sumatriptan and polymorphisms causing OCT1 deficiency have similar effects on sumatriptan pharmacokinetics as those observed in subjects with liver impairment."

^{*}Current address: Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School Brandenburg, Immanuel Clinic Rüdersdorf bei Berlin, Germany.

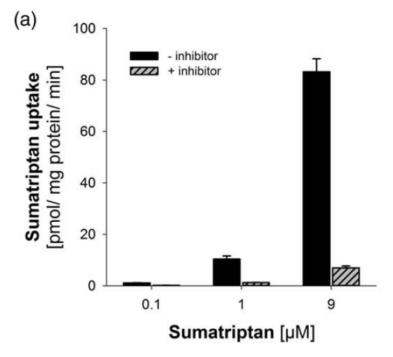
¹Institute for Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany. Correspondence: MV Tzvetkov (mtzvetk@gwdg.de)

OCT1 (SLC22A1): impacts of polymorphisms

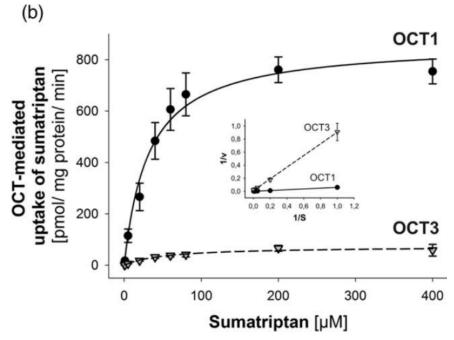
5 common OCT1 polymorphisms in ~9% of Caucasians:

- Strong, or nearly complete decrease in activity (OCT*2, *3, *4, *5 and *6)
- Poor transporters have increased plasma concentrations of:
 - Tropisetron: C_{max} ↑ 377%
 - Sumatriptan: AUC ↑ 215% (similar to hepatic impairment)
 - O-desmethyltramadol: AUC 个 74% (from tramadol)
 - Morphine: AUC 个 70% (from codeine)
 - Fenoterol: AUC ↑ 92%
 - Others may include imatinib, lamotrigine

Sumatriptan basics



- First triptan on the market, still most prescribed
- Low bioavailability (<15%)
- Predominantly metabolized by MAO-A, mainly in the liver
- $LogD_{7.4} = -1.3$
- >95% cationic in blood
- $t_{1/2} = 2.5 \text{ hrs}$
- Only 3% unchanged
- Excretion of metabolites:
 - 60% urine
 - 40% feces

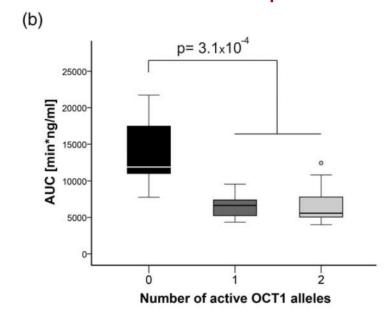

OCT1-mediated transport of sumatriptan

MPP+ inhibition of sumatriptan uptake in human hepatocytes

Sumatriptan uptake by OCT1 vs OCT3 uptake in HEK-293 cells

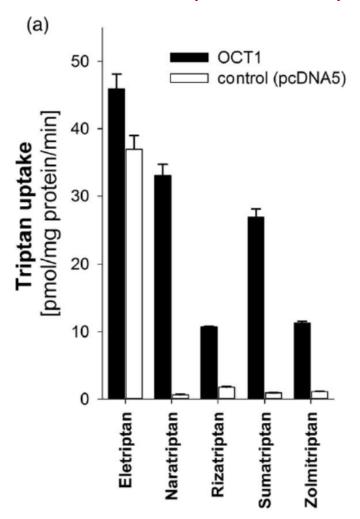
$$K_m = 55 \mu M$$

 $V_{max} = 977 \text{ pmol/mg protein/min}$
 CL_{int} 6-fold that reported for metformin

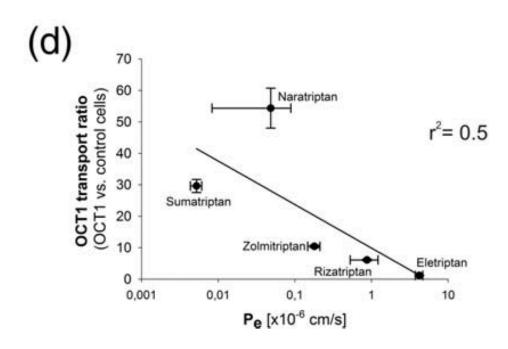

Clinical effect of OCT1 poor transport on sumatriptan

Effects of loss of OCT1 function on human sumatriptan PK

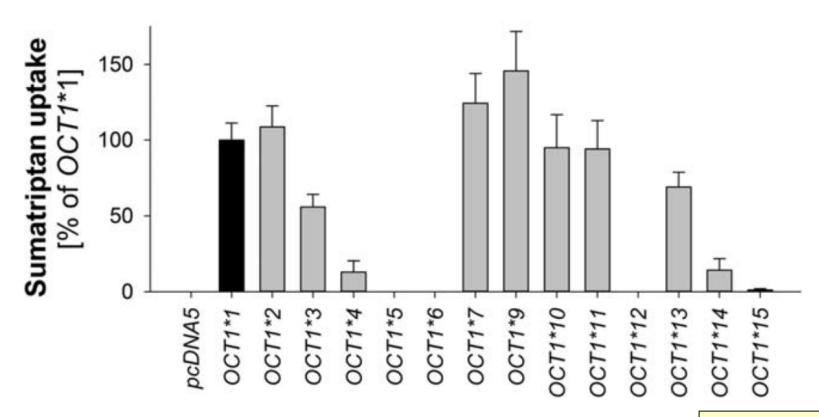
Effects of loss of OCT1 function on human sumatriptan PK



- 53% reduction in total oral clearance OCT1 "controls" access to hepatic MAO-A
- Similar to 50% reduction of the extrarenal clearance of sumatriptan in Oct1/Oct2 knockout mice


OCT1-mediated transport of other triptans

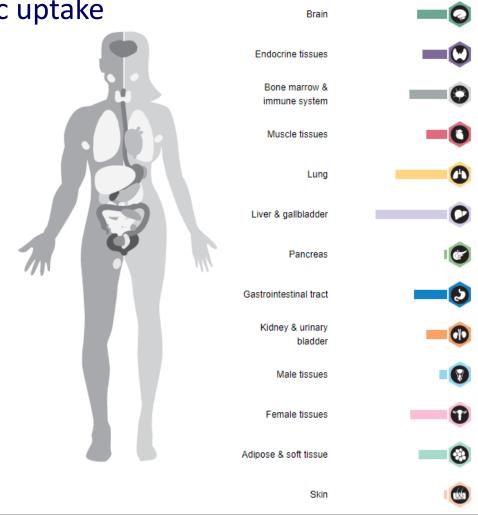
OCT-mediated uptake of triptans


Inverse correlation between uptake and PAMPA permeability

OCT1 (SLC22A1): impacts of polymorphisms

- 2% of Europeans and white Americans are poor OCT1 transporters with respect to sumatriptan
- Substrate-dependent effects: different polymorphisms affect O-desmethyltramadol, morphine and metformin differently

OCT1 (SLC22A1): Potential DDIs


- Main evidence with sumatriptan is with MAO inhibitors, as expected from sumatriptan's metabolism
- Some evidence for increased efficacy of sumatriptan at lower starting doses of 25 –
 50 mg with OCT1 poor transporters
- Eletriptan and rizatriptan less likely to have OCT1-mediated interactions because of higher permeability
- Naratriptan?
- It would be interesting to look at the FDA's AERS
- We know that metformin has interactions because PD is (relatively) easy to measure

OATP2B1 (SLC22A1) basics

RNA expression (TPM)i

- Most highly expressed OATP in human intestine
- Apical intestinal and sinusoidal hepatic uptake
- Polymorphic
- Transports several drugs:
 - Rosuvastatin
 - Atorvastatin
 - Pravastatin
 - Celiprolol
 - Fexofenadine
 - Montelukast
 - Aliskiren

OATP2B1 (SLC22A1): impacts of polymorphisms and DDIs

Several polymorphisms, not particularly well characterized yet

- Variable, sometimes contradictory, effects:
 - Rosuvastatin: AUC 个 112%
 - Celiprolol: AUC ↓ 50%
 - (S)-fexofenadine: AUC 个 51%
 - Fexofenadine: AUC ↓ 36%
 - Montelukast: AUC ↓ 46%

Complex DDIs

If a drug candidate is a strong OATP1B1/3 inhibitor in a definitive study – consider an OATP2B1 inhibition study (promiscuity)

- Ronacaleret inhibits intestinal OATP2B1, ↓ rosuvastain AUC 50%
- Asunaprevir inhibits hepatic OATPs, and ↑ rosuvastain AUC ~190%

OAT2 (SLC22A7): Just the beginning?

Xenobiotica

Xenobiotica, Early Online: 1–13 © 2017 Informa UK Limited, trading as Taylor & Francis Group. DOI: 10.1080/00498254.2017.1384595

RESEARCH ARTICLE

In vitro studies with two human organic anion transporters: OAT2 and OAT7

Sumathy Mathialagan¹, Chester Costales¹, Laurie Tylaska¹, Emi Kimoto¹, Anna Vildhede¹, Jillian Johnson¹, Nathaniel Johnson¹, Takami Sarashina², Kenta Hashizume², Caleb D. Isringhausen³, Lydia M. M. Vermeer³, Andrea R. Wolff³, and A. David Rodrigues¹,

¹Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA, ²Sekisui Medical Co., Ltd, Tokyo, Japan, and ³Sekisui XenoTech, LLC, Kansas City, KS, USA

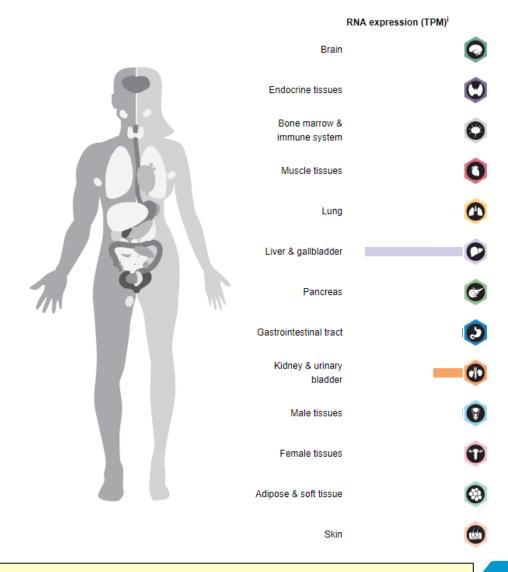
1521-0103/367/2/322-334\$35.00
THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS
Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics

https://doi.org/10.1124/jpet.118.252049 J Pharmacol Exp Ther 367:322–334, November 2018

Organic Anion Transporter 2–Mediated Hepatic Uptake Contributes to the Clearance of High-Permeability–Low-Molecular-Weight Acid and Zwitterion Drugs: Evaluation Using 25 Drugs^{SI}

Emi Kimoto, Sumathy Mathialagan, Laurie Tylaska, Mark Niosi, Jian Lin, Anthony A. Carlo, David A. Tess, and

Manthena V. S. Varma


Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut Received July 12, 2018; accepted August 15, 2018

OAT2 (SLC22A7) basics

- Most highly expressed OAT in the liver (sinusoidal)
- Expressed in kidney (basolateral)
- Transports several high-permeability low-molecular-weight acids and zwitterions (permeability-limited ECCS Class 1A drugs):
- S- and R-warfarin
- Tolbutamide
- Diclofenac
- Fenoprofen
- Ibuprofen
- Ketoprofen
- Indomethacin

- Isoxicam
- Meloxicam
- Piroxicam
- Pioglitazone
- Rosiglitazone
- Tolcapone
- Gliclazide

OAT2 (SLC22A7): impacts of polymorphisms and DDIs

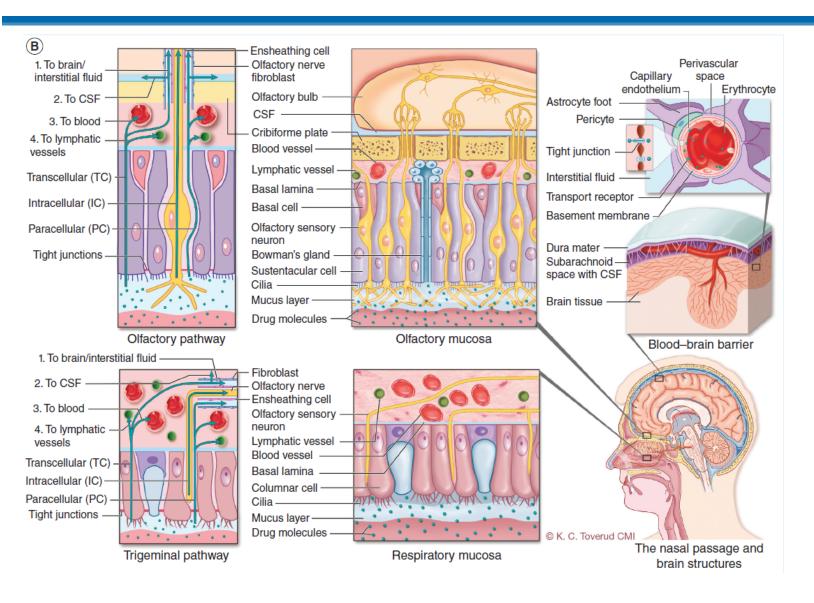
Unfortunately not characterized yet

DDIs?

- Many DDIs with OAT2 substrates attributed to CYP2C and UGT inhibition
- However PBPK models that take into account CYP2C/OAT2 interplay provide better prediction: intriguing implications
- One possibility: Some evidence that decreased theophylline CL with erythromycin is due to OAT2 inhibition

Unusual routes of administration

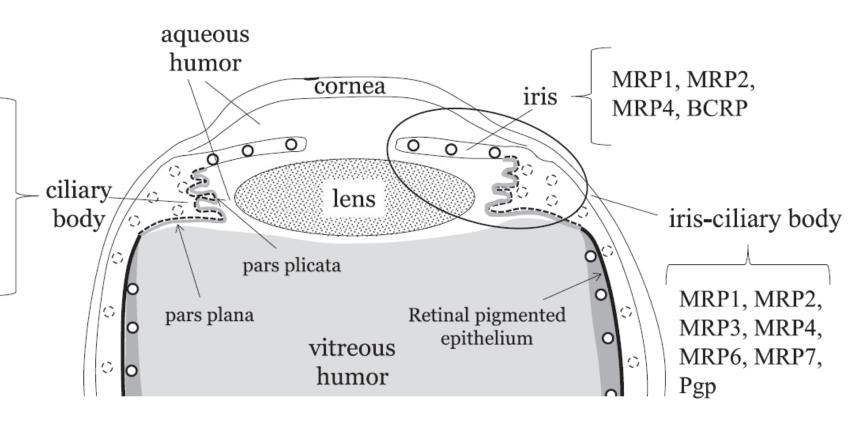
Nasal


- OCT1, 2, 3, OCTNs possibly several others
- Also nose-to-brain transport through olfactory and trigeminal nerves

Ophthalmic

- Depending on the paper and compartment within the eye:
 - OATP1A2, 1B1, 1B3, 2B1, 1C1, 2A1, 3A1, 4A1, 4C1, 5A1, 6A1
 - OAT1, 2, 3, 4
 - ASBT, NTCP, OCT1, 2, 3, OCTNs, MATEs, PEPTs

Nasal - overview



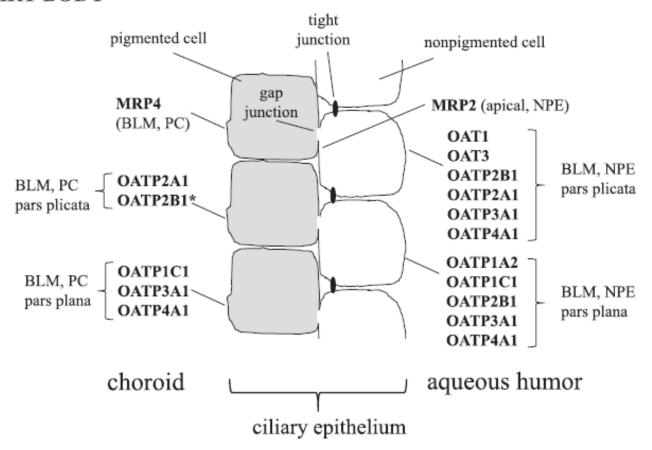
- Nasal epithelium: OCTs,
 OCTNs, others
- Nose to brain transport
- Can cross "leaky" choroid plexus to CSF
- Blood-CSF barrier:
 OATs, OATPs, OCTs, MRPs,
 others
- BBB: OCTNs, OATP1A2, P-gp,
 BCRP, ENT2, others

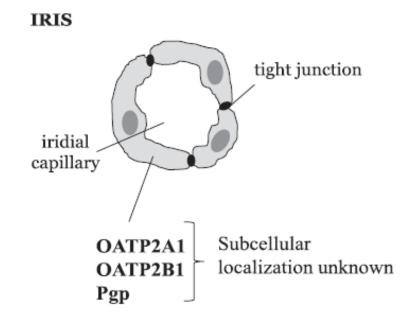
Ophthalmic - overview

MRP1, MRP2, MRP4, Pgp, BCRP, OATP1A2, OATP1C1, OATP2B1, OATP3A1, OATP4A1, OAT1, OAT3, NaDC3

O: tight endothelial cells

: fenestrated endothelial cells


— : retinal pigmented epithelium


---: ciliary epithelium (bilayer)

Ophthalmic – detailed view

CILIARY BODY

Conclusions

- Guidance is guidance may need to go beyond
 - EMA probably had it right in 2013: Routine evaluation of OCT1
- Consider ITC3 recommendations
- Consider ECCS
 - Class 2 and 4: OCT1
 - Could ALL ECCS 1A drugs be OAT2 substrates?
- OATP2B1, others as needed
- Special routes of administration?
 - Know the transporters in the tissues

www.xenotech.com

Featuring publications, posters, webinars and other useful resources.

Webinar Topic Request Form:

www.xenotech.com/scientific-resources/upcoming-webinars

XenoTech's Services & Products:

In Vitro ADMET PK & DDI

- Drug Transport
- Drug Metabolism
- Enzyme Inhibition & Induction
- Protein Binding
- Metabolite Identification
- ADME Screening
- Toxicology

In Vivo ADME/PK & Distribution

- QWBA
- Microautoradiography
- Excretion / Mass Balance
- Tissue Distribution
- Blood / Plasma & Lymphatic Partition Rate

Bioanalytical

Pharmacology

- In Vitro Ligand Binding & Radioreceptor Assays
- Immunoassays

Chemical Synthesis

- · Radiolabeled Synthesis
- Metabolite Synthesis
- Peptide Synthesis

Consulting...

Cellular Products

- · Hepatocytes (Cryo/Fresh, Genotyped...)
- Non-Parenchymal Cells (Kupffer Cells)

Subcellular Fractions

- Liver Microsomes
- S9 Fractions
- Cytosol
- Homogenate
- Lysosomes & Tritosomes
- Mitochondria
- Extrahepatic Fractions

Custom Products

· Various Species, Tissues & Preparations

Research Biobank

• Normal & Diseased Tissue Samples

Recombinant Enzymes

Substrates & Metabolites

Metabolite Production Kits

JCRB Cell Lines...

info@xenotechllc.com

EXPERTISE • EFFICIENCY • SUPPORT • PRECISIO 1

Thank You!