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Overview
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• Introduction
– Transporters in drug development
– 2017 FDA in vitro drug-drug interaction (DDI) guidance transporter

updates

• Case study 1: solute carrier transporter inhibition
• Case study 2: P-gp transport in Caco-2 cells
• Case study 3: permeability in Caco-2 cells
• Conclusions: lessons learned



Transporter assays in drug development
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• In vitro drug transporter assays performed throughout drug
development to answer myriad questions (DDI focus)
– Cell permeability studies
– Inhibition / substrate potential

• Range from simple screens to kinetic assessments in
complex assay formats

• When the compounds behave, things are straightforward
• When drugs misbehave, understanding the data and

establishing a path forward can be challenging



Assay formats
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• Numerous human transporter proteins
• In vitro study designs based on availability of a test

system to study the protein in question
• Generally

• Each test system needs appropriate conditions and
controls to be useful

Polarized/transfected cell lines Hepatocytes Membrane vesicles

Caco-2

HEK293



Transporter assays in 2017 FDA DDI guidance
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• Several changes related to
transporter assays were made

• Some easily accommodated
– e.g., 30 min preincubation for OATP

assays

• Some were more challenging
– e.g., 2 inhibitors for each transporter

• Some spoke to practical
considerations and the ways data
should be interpreted
– What we are about to talk about…



Factors for consideration
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• FDA 2017 DDI guidance emphasized need for more rugged
transporter study designs, considering
– Stability in the test system
– Non-specific binding to cells and experimental apparatus
– Solubility limits
– Effect of additive serum protein
– Effect of prefiltration
– Effect of cytotoxicity
– Effect of other experimental steps

• Why?



Case 1: solute carrier (SLC) inhibition
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• Study scope: substrate and inhibition potential of compound
for
– OATP1B1
– OATP1B3
– OAT1
– OAT3
– OCT2
– MATE1
– MATE2-K

• Discussion will focus on inhibition for DDI potential



Case 1: SLC inhibition data – positive result
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• Inhibition of OATP1B1 observed

IC50: 11.2 µM

OATP1B1



Case 1: SLC inhibition data – positive result
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• Inhibition of OATP1B3 observed

IC50: 6.20 µM

OATP1B3



Case 1: SLC inhibition data – negative result
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• No inhibition of OCT2

OCT2



Data interpretation: FDA basic model
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• Starting point to evaluate need for clinical studies
Transporters Equation Cutoff

OATP1B1, OATP1B3 1 +
𝑓𝑓𝑢𝑢,𝑝𝑝 × 𝐼𝐼𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝐼𝐼50
≥ 1.1

P-gp, BCRP
𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔
𝐼𝐼𝐼𝐼50

≥ 10

OAT1, OAT3, OCT2
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢
𝐼𝐼𝐼𝐼50

≥ 0.1

MATE1, MATE2-K
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚,𝑢𝑢
𝐼𝐼𝐼𝐼50

≥ 0.02

Where
Imax = unbound plasma Cmax.ss
Fa = fraction absorbed
Fg = intestinal availability
ka = absorption rate constant
Qh = hepatic blood flow
Rb = blood-to-plasma concentration ratio

𝐼𝐼𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 +
𝐹𝐹𝑎𝑎𝐹𝐹𝑔𝑔 × 𝑘𝑘𝑎𝑎 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

⁄𝑄𝑄ℎ 𝑅𝑅𝑏𝑏

If unknown, use FaFg = 1 and ka = 0.1 min-1 as worst-case scenario
May have to assume Rb = 1 and Qh = 1.6 L min-1



Case 1: compound recovery data
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• Recovery data for compound in HEK293 cells and apparatus
– Compound incubated for 30 min in the presence and absence of cells

Sample
Theoretical

concentration
(µM)

Mean 
experimental 
concentration

(µM)

CV 
(%)

Recovery
(%)

Adsorption 
(%)

No cells
0.03 (2.22 ± 1.3) x 10-2 4.7 74.0 26.0

80 62.3 +/- 2.6 4.3 77.9 22.1

Control 
HEK cells

0.03 (2.27 ± 1.2) x 10-2 4.5 75.5 24.5

80 44.6 ± 9.6 22.3 55.8 44.2 Low recovery 
in the 

presence of 
cells



• Calculations performed using established IC50 values

• But ~50% nonspecific binding, so theoretically IC50 values could
be half the calculated values (at worst)
– NSB-corrected IC50 values gave ROATP1B1 = 1.1899 ≥ 1.1
– OATP1B1 recommended for conservative scenario inhibition potential too

Case 1: Cutoff data for SLC transporter inhibition
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Transporter IC50 (µM) Value Cutoff Inhibition potential

OATP1B1 11.2 1.0950 ≥ 1.1 No

OATP1B3 6.2 1.1715 ≥ 1.1 Yes

OAT1 35.6 0.0026 ≥ 0.1 No

OAT3 11.2 0.0082 ≥ 0.1 No

OCT2 >30 No inhibition ≥ 0.1 No

MATE1 22.3 0.0041 ≥ 0.02 No

MATE2-K >30 No inhibition ≥ 0.02 No



Case 2: P-gp substrate potential
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• Study scope – P-gp transport in Caco-2 cells
• Assays performed in transwell format
• Polarized cell monolayer

• B to A: active transport
• A to B: passive permeability

Ye, Dawson and Lynch Analyst, 2015, 140: 83-97

B to AA to B

Donor: side where drug is administered
Receiver: opposite side

200 µL

980 µL



Data processing: some math
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• Permeability calculations based on Fick’s first law:
𝐽𝐽𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝐶𝐶

Where Jwall = flux       P = permeability coefficient C = maximal intestinal concentration

• Normal transwell assay data processing:

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑉𝑉𝑅𝑅

𝐴𝐴 × 𝐶𝐶𝐷𝐷𝐷
×
∆𝐶𝐶𝑅𝑅
∆𝑡𝑡

Where Papp = apparent permeability coefficient (cm/s) VR = receiver volume (cm3)
A = membrane surface area (cm2) CD0 = donor concentration at time zero
ΔCR / Δt = change in receiver concentration over time (s)

• Mass equation (for mass balance):
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =

𝑉𝑉𝐷𝐷
𝐴𝐴 × 𝑀𝑀𝐷𝐷

×
∆𝑀𝑀𝑅𝑅

∆𝑡𝑡
Where Papp = apparent permeability coefficient (cm/s) VD = donor volume (cm3)
A = membrane surface area (cm2) MD = donor amount (mol)
ΔMR / Δt = change in receiver amount (mol) over time (s)

Youdim, Avdeef and Abbott Drug Discovery Today, 2003, 8 (21): 997 – 1003



Case 2: transwell substrate assay challenge
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• Transwell assays can suffer from nonspecific binding problems
– Different surface area: volume on A and B sides
– Compound binds to the apparatus and also to the cell monolayer

• For substrate assays, need to be able to measure the
compound to low levels

Ye, Dawson and Lynch Analyst, 2015, 140: 83-97

200 µL

980 µL



• Recovery in the absence of cells

• Up to 58.2% lost through apparatus adsorption at the low
concentrations

Case 2: recovery data in apparatus/control cells
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Theoretical
concentration

(µM)

Mean 
concentration

stock (µM)

Deviation
from 

nominal (%)

Mean 
concentration
at 2 min (µM)

Recovery (%)
Mean 

concentration
at 90 min (µM)

Recovery (%)

0.5 0.480 4.0 0.375 78.2 0.200 41.8

2.5 2.65 6.2 2.13 80.1 1.44 54.3

10 9.89 1.1 8.78 88.8 7.47 75.5

30 26.1 13.0 24.9 95.6 23.1 88.5



• Recovery in the presence of control cells (90 min)

Case 2: recovery data in apparatus/control cells
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All low 
recovery

A>B lowest

Can confuse conclusions

Theoretical
concentration (µM)

Recovery apical to basal 
(%)

Recovery basal to apical 
(%)

1 41.2 74.8

3 55.5 69.7

10 54.0 76.6

200 µL

980 µL



• Papp and efflux ratios

• Per FDA DDI Guidance 2017: The following suggests that a drug is an in
vitro P-gp substrate
– A net flux ratio (or efflux ratio) of ≥2 in cells that express P-gp
– A flux that is inhibited by at least one known inhibitor at a concentration at least

10x its Ki

Case 2: Caco-2 P-gp substrate data
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Theoretical
concentration

(µM)
Samples Papp A > B 

(1x10-6 cm s-1)
Papp B > A 

(1x10-6 cm s-1) Efflux ratio

0.3
No inhibitor 5.86 11.7 1.99

Inhibitor 9.27 14.1 1.52

3
No inhibitor 8.54 16.2 1.90

Inhibitor 13.3 18.3 1.46

Inconclusive??



Data processing binding correction
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• Mass equation (for mass balance):

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑉𝑉𝐷𝐷

𝐴𝐴 × 𝑀𝑀𝐷𝐷
×
∆𝑀𝑀𝑅𝑅

∆𝑡𝑡

Where Papp = apparent permeability coefficient (cm/s) VD = donor volume (cm3)
A = membrane surface area (cm2) MD = donor amount (mol)
ΔMR / Δt = change in receiver amount (mol) over time (s)

• Correction equation:

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑉𝑉𝐷𝐷

𝐴𝐴 × 𝑀𝑀𝐷𝐷 −𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
×
∆𝑀𝑀𝑅𝑅

∆𝑡𝑡

Mcells = amount of material in monolayer (mol) MD = donor amount (mol)
ΔMR / Δt = change in receiver amount (mol) over time (s)

𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑀𝑀𝐷𝐷𝐷 − 𝑀𝑀𝐷𝐷𝐷𝐷 + �𝑀𝑀𝑅𝑅

Where MD0 = donor amount (mol) at time zero MDt = donor amount (mol) at time t
ΣMR = sum of receiver amount (mol) at all time points

Youdim, Avdeef and Abbott Drug Discovery Today, 2003, 8 (21): 997 – 1003



• Papp and efflux ratios calculated accounting for monolayer material

• Not a human P-gp substrate
– Efflux ratio does not approximate 2 when Mcells is taken into account

Case 2: Caco-2(P-gp) substrate data
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Theoretical
concentration

(µM)
Samples Papp A > B

(1x10-6 cm s-1)
Papp B > A

(1x10-6 cm s-1) Efflux ratio

0.3 
No inhibitor 15.8 16.6 1.05

Inhibitor 21.6 22.6 1.05

3
No inhibitor 19.1 28.7 1.50

Inhibitor 31.4 30.1 0.959

Conclusive!



Case 3: Caco-2 permeability
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• Study: Caco-2 permeability screen in transwell format
• Screen

– 1 compound concentration; ± inhibitor (valspodar)
– 1 time point
– Quick LC-MS/MS method development
– Papp, efflux ratio and recovery measurement
– High and low permeability controls



Case 3: Caco-2 permeability screen
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• Screening so minimal information; no structure

• Repeated assay and obtained same results
• Nonspecific binding again? Unlikely because HIGH recovery

No Papp data – nothing in receiver samples -
and impossibly high recovery

Sample Papp A > B
(1x10-6 cm s-1)

Papp B > A
(1x10-6 cm s-1) Efflux ratio Recovery 

A > B (%)
Recovery 
B > A (%)

10 µM Compound 0 0 No data 150 387

10 µM Compound + 
inhibitor 0 0 No data 161 182

10 µM Digoxin 1.86 68.0 36.6 105 94.3

10 µM Mannitol 0.831 0.720 0.867 80.9 76.3

10 µM Caffeine 19.9 21.5 1.08 75.9 81.8

Digoxin – P-gp positive control
Mannitol – low permeability control
Caffeine – high permeability control



• Screening: no supporting data available – requested structure

Case 3: troubleshooting
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Amides can hydrolyze enzymatically and non-
enzymatically in Caco-2 cells

2 Products proposed

Weakly ionizable by 
electrospray (LC-MS/MS)

Ionizable by electrospray 
(LC-MS/MS)



Case 3: exploring hydrolysis hypothesis
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• High-resolution product ion spectrum for compound standard

• Identical spectrum obtained for donor samples



• Product ion spectrum for product A in donor sample

• Product A also detected in receiver samples

Case 3: exploring hydrolysis hypothesis
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Compound hydrolysis 
confirmed in the 

incubation samples by 
detection of hydrolysis 

product A



Case 3: back to the math
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• Normal transwell assay data processing:

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑉𝑉𝑅𝑅

𝐴𝐴 × 𝐶𝐶𝐷𝐷𝐷
×
∆𝐶𝐶𝑅𝑅
∆𝑡𝑡

Where Papp = apparent permeability coefficient (cm/s) VR = receiver volume (cm3)
A = membrane surface area (cm2) CD0 = donor concentration at time zero
ΔCR / Δt = change in receiver concentration over time (s)

• Dimensional analysis: all units cancel except cm s-1

• So?
– This is a relative assay and the units of concentration don’t matter as

long as they are consistent
– Can calculate Papp using area ratio of the hydrolysis product without a

reference standard



Case 3: corrected data
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• Reinjected sample batch with longer LC method and
monitored hydrolysis product A as well as compound

• Confirmed permeability results for parent compound
• Evaluated permeability characteristics of product A

Sensible recovery

Sample Papp A > B
(1x10-6 cm s-1)

Papp B > A
(1x10-6 cm s-1) Efflux ratio Recovery 

A > B (%)
Recovery 
B > A (%)

10 µM Compound 0 0 No data 79.9 101

10 µM Compound + 
inhibitor 0 0 No data 78.8 76.1

Amide hydrolysis 
product A 26.4 62.5 2.37 NA NA

Amide hydrolysis 
product A + inhibitor 24.7 8.33 0.337 NA NA

Amide hydrolysis product A values calculated using peak area ratio data
Sensible recovery

Useable Papp values



• Confirmed active transport of hydrolysis product A by targeted
metabolite monitoring
– Efflux ratio > 2
– Reduced in the presence of the P-gp inhibitor valspodar

• Confirmed instability of parent compound in incubation

• Conclusion: compound rapidly hydrolyzed to product A which
then required active transport for efflux across the cells

Case 3: conclusion

29



Conclusion: lessons learned
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• Critical factors highlighted in the 2017 FDA DDI guidance can
have a big impact on interpreting transporter data
– Solubility
– Cytotoxicity
– Nonspecific binding
– Stability in the test system

• Remember practical factors of the assays and assumptions
when troubleshooting

• Can reach useful conclusions in challenging situations

• Give partners the compound structure to access their
knowledge and get the best results!



Acknowledgments

31

• Dr. Brian Ogilvie
• Andrea Wolff
• Rebekah Snyder
• Lois Haupt
• Andrea Rhoades
• Chase McCoy
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