

1-877-588-7530 | +913.438.7450 • WWW.XENOTECH.COM

PROVEN GLOBAL CONTRACT RESEARCH EXPERTISE FROM DISCOVERY THROUGH CLINICAL SUPPORT

In Vitro Evaluation of Immunomodulating Drugs as Perpetrators of Drug Interactions

Maciej Czerwiński, Ph.D.

Director, Consulting mczerwinski@xenotechllc.com

EXPERTISE • EFFICIENCY • SUPPORT • PRECISION

Presentation outline

- Immunomodulators
- Immunomodulator drug-drug interactions
- Regulatory guidance
- XenoTech study design
- Case studies

Immunomodulators

- Definition immunomodulators are drugs that adjust immune response
 - Large molecules
 - antibodies, recombinant cytokines, cytokine receptors, vaccines
 - Small molecules
 - Tofacitinib, JAK inhibitor, in management of rheumatoid arthritis
 - Disease modifying drugs in multiple sclerosis such as azathioprine, cladribine, cyclophosphamide, methotrexate, and mitoxantrone
 - Thalidomide analogs in multiple melanoma
- Our emphasis is on compounds affecting cytokines

Immunomodulator drug-drug interactions

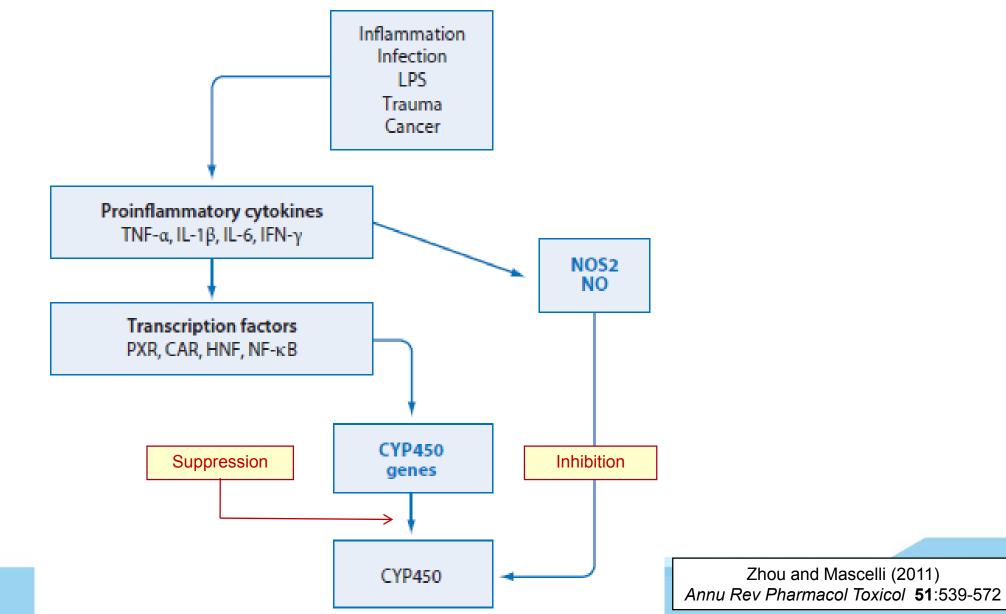
Viral and bacterial infection Vaccination Inflammatory diseases (*e.g.*, RA) Chronic diseases (e.g., cancer) Certain therapeutic proteins (TP)

Fever

Pro-inflammatory cytokines 个 (IL-1, IL-6, TNFα)

Acute phase reaction proteins $\uparrow \downarrow$ (C-reactive protein, α_1 -acid glycoprotein, complement factors *etc.*) Suppression of drug metabolizing enzymes (e.g. CYP enzymes) Increased systemic exposure to hepatically cleared drugs Drug toxicity and/or exaggerated pharmacology

Immunomodulator drug-drug interactions


The ability of vaccination, cytokines (interferons, interleukins) to cause clinically significant impairment of the CYP-dependent metabolism of drugs has been know for decades

Some cytokines suppress CYP levels by acting **directly** on the hepatocyte. Examples: IL-1 β , IL-6 and TNF α , **but not** others such as IL-2

Others suppress CYP levels **indirectly** by first causing the release of cytokines from Kupffer cells or peripheral blood mononuclear cells (PBMC. Examples: endotoxin (lipopolysaccharide or LPS, bacterial oligos that contain pathogen-associated molecular patterns e.g. CpG)

Cytokines can suppress CYP levels by **activating** certain transcription factors (such as NF κ B, STAT1 and C/EBP- β) which diminish the transcriptional activity of other nuclear receptors such as CAR, PXR, GR and HNFs

Diminished drug metabolism during inflammation

6

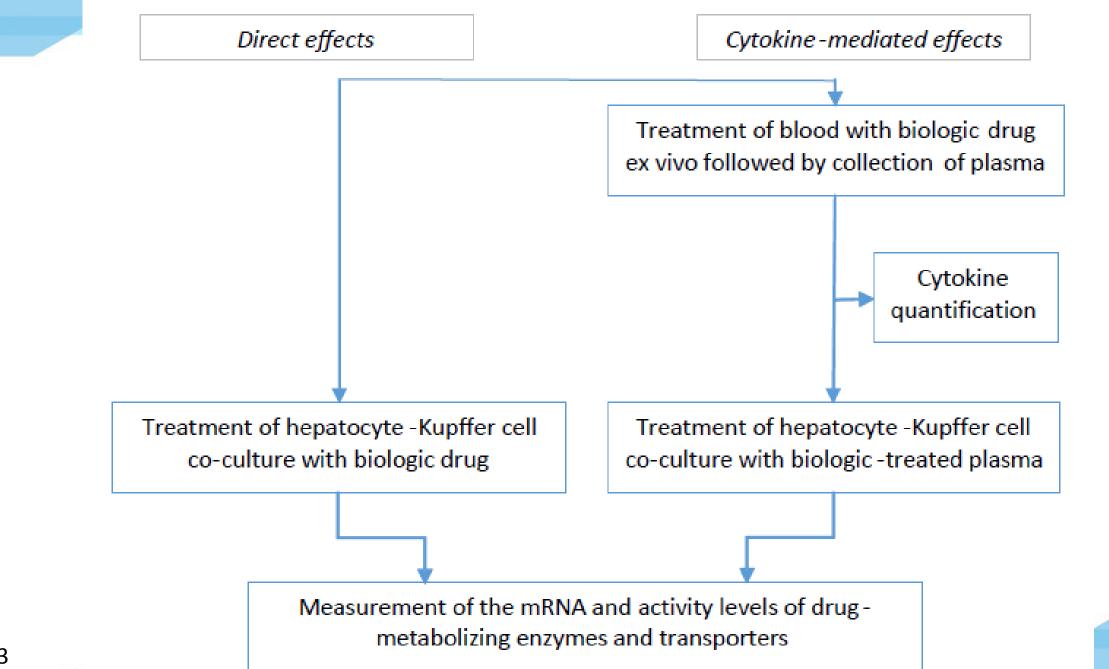
• FDA's 2012 guidance

- Low potential for small molecule drugs to affect "therapeutic proteins" some exceptions
- Focus was on TPs as: cytokines, or peptide hormones that are cytokine modulators causing CYP suppression
- Also covered was de-suppression (e.g., tocilizumab)
- Noted "In vitro or animal studies have limited value in the . . . projection of clinical interactions"
 - Suggested clinical cocktail studies

- Other scenarios mentioned in 2012 FDA guidance
 - TPs used in combination therapy "evaluate effect of each product on the other"
 - "When there are known mechanisms or prior experience with certain PK or PD interactions, appropriate in vitro or in vivo assessments" should be conducted
 - Immunosuppressant effect of methotrexate can alter antibody formation against a TP

- Europe EMA 2013: Guideline on the investigation of drug interactions
 - "Interactions with therapeutic proteins <u>including peptides</u>... are not discussed in this guideline" – Refers to 2007 guideline
- EMA 2007: Guideline on clinical PK of TPs
 - "some therapeutic proteins (e.g. immunomodulators such as cytokines) have shown a potential for inhibiting or inducing CYP-enzymes and thus the need for in vitro or in vivo studies should be considered on a case-by-case basis"
 - "we lack knowledge about suitable tools to explore such interactions"
- Japan PMDA 2017: Drug Interaction Guideline

Is new FDA guidance on DDI evaluation for TPs coming soon?

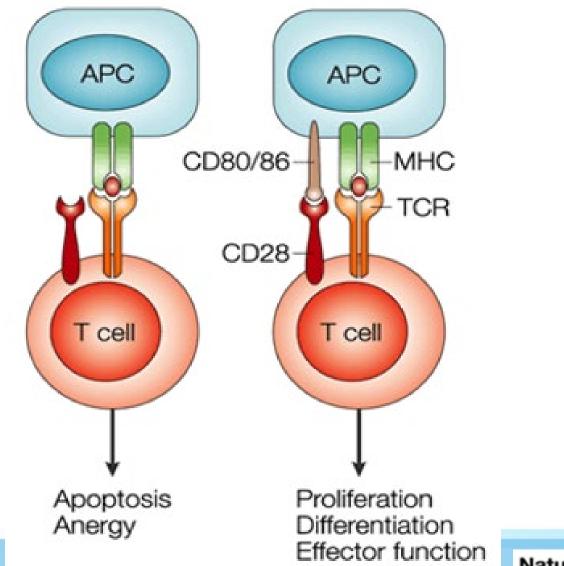

- FDA posted a request for information and comments in May of 2018:
 - 1. In what scenarios and for which classes of TPs should DDI assessment be performed?
 - 2. What types of assessments can be useful?
 - 3. What are the study design considerations?

- Comments were received by pharma companies (8), the IQconsortium leadership groups (2), XenoTech
- Many recommendations, including:
 - Risk-based assessment, including patient population, etc.
 - FDA should state their position on the utility of in vitro assessments for TP DDI prediction
 - Restrict recommendations to TPs that modulate pro-inflammatory cytokines
 - Allow PopPK analysis of DDIs

11

- In vitro studies with a TP should not be required when clinical translation has
- been previously established for a targeted TP (e.g., anti-IL6 mAb)

- XenoTech (SXT) comments in the FDA docket:
 - In vitro testing in hepatocytes typically has been limited by:
 - Investigating a single recombinant cytokine at a time
 - Absence of other relevant cell types
 - SXT has developed "in vitro system to evaluate xenobiotics as immune-modulators of drug transport and metabolism in human hepatocytes"
 - Treatment of whole blood by TP followed by treatment of hepatocytes with the plasma allows for indirect effects to be evaluated.
 - Plasma from patients can be used in our studies



Case study - anti-CD28 mAb

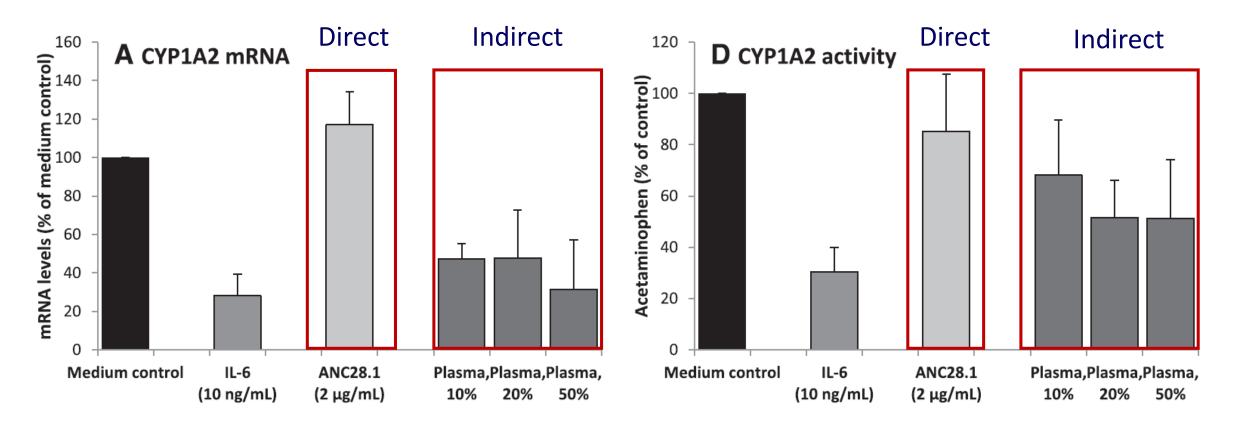
Anti-CD28 monoclonal antibody-stimulated cytokines released from blood suppress CYP1A2, CYP2B6, and CYP3A4 in human hepatocytes in vitro

We chose ANC28 based on another anti-CD28 antibody, TGN1412, which caused cytokine storm and severe toxicity in a first-in-man study and dramatically highlighted the need to improve preclinical safety assessment of therapeutic proteins

Role of CD28 in regulation of T cells

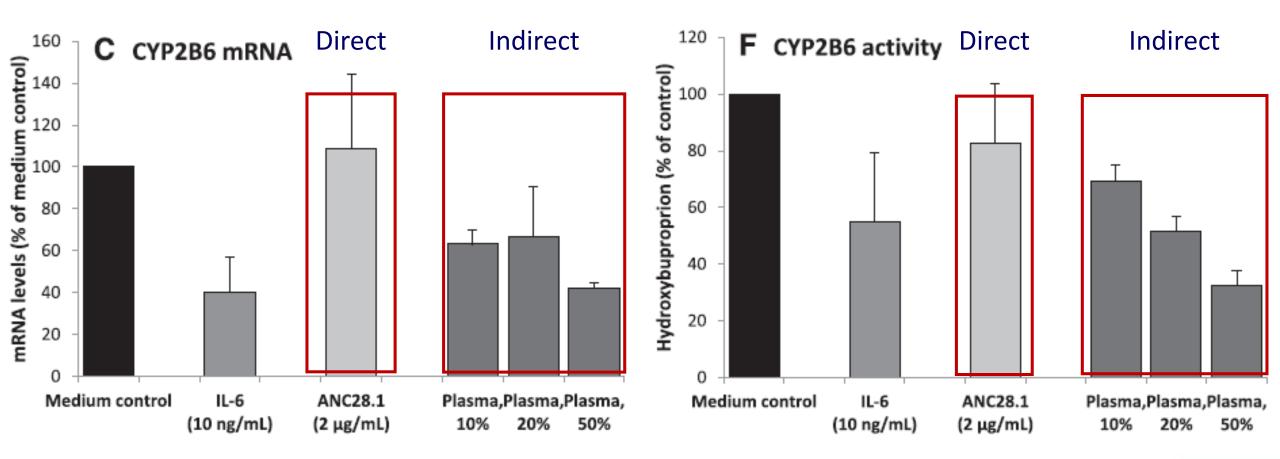
Nature Reviews | Immunology

CD28 mAb case – scope of the study

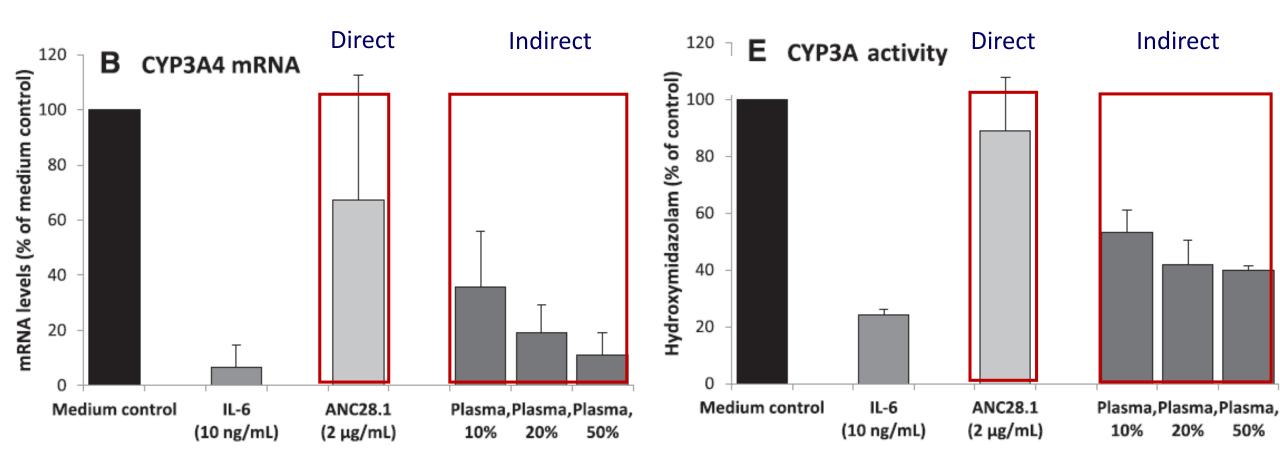

Parameter	
Blood treatments	4 donors, 24 h, 37°C, one concentration of the mAb
Cytokines analyzed in plasma	9
Number of hepatocyte co-cultures	3
Plasma in cell culture medium	10%, 20%, 50% v/v
Analysis end-points	mRNA and activity of CYP1A2, 2B6, 3A4

CD28 mAb – cytokine release

Cytokine —	Treatment			
	Saline	LPS	MOPC antibody	ANC28 antibody
Interferon-y	4.7	5160	2.1	109
Interleukin-1β	2.3	5520	0.53	18.1
Interleukin-2	8.2	107	8.0	749
Interleukin-6	4.7	12000	1.2	110
Interleukin-8	800	10000	490	5400
Interleukin-12	7.2	55.0	2.6	BLQ
TNF-α	8.5	5830	5.7	227
GM-CSF	15	200	21	540


¹⁷ ANC28 caused significant increases in IFN- γ , IL-2, IL-6, IL-8, TNF- α and GM-CSF

CD28 mAb – indirect suppression of CYP1A2



Primary cultures of human hepatocytes from three donors were incubated for 72 hours with medium alone, medium containing IL-6, ANC28.1, or plasma prepared from blood treated with ANC28.1

CD28 mAb – indirect suppression of CYP2B6

CD28 mAb – indirect suppression of CYP3A4

CD28 mAb – conclusions

- LPS and ANC28 antibody caused the release of multiple cytokines from whole human blood ex vivo
- Plurality of the cytokines suppressed the mRNA and the enzymatic activity of hepatic CYPs in vitro while the Ab itself did not
- DDI potential of certain therapeutic proteins, such as ANC28, can be identified in vitro provided that cytokine release in blood is taken into account

Case study - albumin-fused growth hormone TV-1106

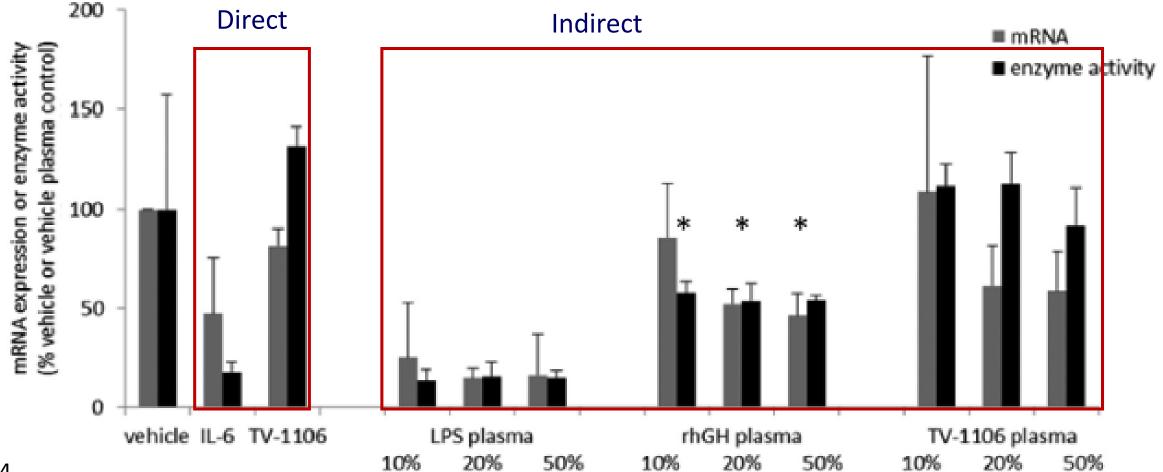
Direct and cytokine-mediated effects of albumin-fused growth hormone, TV-1106, on CYP enzymes expression in human hepatocytes in vitro

TV-1106: human growth hormone genetically fused to human albumin. Fusion of GH and A—a carrier protein without hormone activity, but with a long plasma half-life, extends systemic circulation of GH and preserves hormone activity. TV-1106 is being developed for treatment of GH deficiency to provide a sustained exposure.

Czerwiński et al., (2018) PRP 6: 42-52

TV-1106 – cytokine release

The effects of drug vehicle, LPS, GH or TV-1106 on cytokine release in whole blood ex vivo


Cutakina	Treatment				
Cytokine —	Saline	LPS	Growth hormone	TV-1106	
Interferone-y	15	3000	40	7.7	
Interleukin-1β	4.6	13000	90	20	
Interleukin-2	33	320	213	61	
Interleukin-6	32	15000	880	78	
Interleukin-8	2500	11000	5800	3500	
Interleukin-10	8.8	1200	28	5.1	
Interleukin-12p70	24	46	5.5	13	
TNF-α	20	8500	130	27	
GM-CSF	82	470	306	230	

TV-1106, on an equimolar basis for the hormone, caused release of smaller amounts of cytokines than unmodified GH. IL6 increased by GH was significantly higher than the cytokine in the TV-1106 plasma

23

TV-1106 – effects on CYP1A2

Direct and indirect effects of GH and TV-1106 on CYP1A2

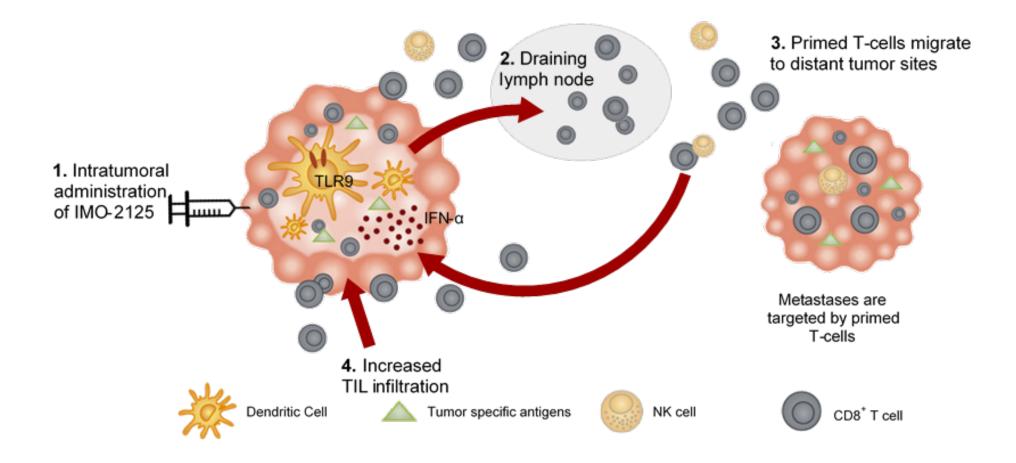
TV-1106 – effects on CYP3A4

Direct and Indirect effects of GH and TV-1106 on CYP3A4

TV-1106 - conclusions

- Treatment of blood with GH increased multiple cytokines, while treatment of blood with TV-1106 had no effect on the nine cytokines
- GH had little or no direct effect on CYP1A2 or CYP2C19 mRNA but increased CYP3A4 mRNA twofold (not shown), the GH indirectly suppressed CYP1A2 and CYP3A4
- TV-1106 had little or no, direct or indirect effect on CYPs mRNA or activity
- In contrast to GH, albumin-fused TV-1106 was unlikely perpetrator of CYP1A2, 2C19 or 3A4- direct or cytokine-mediated DDI

Case study - Tilsotolimod

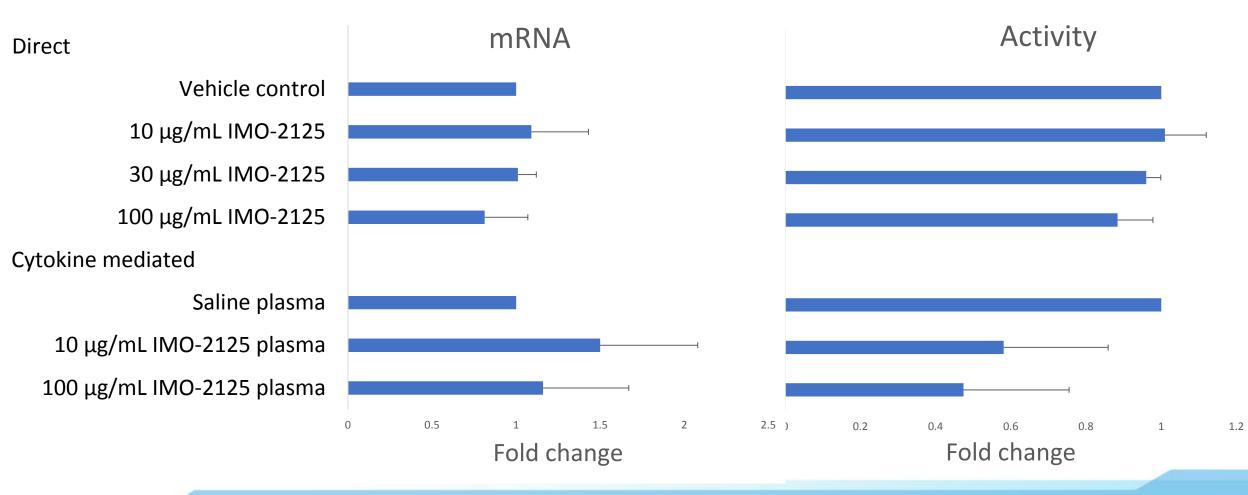

Cytokine-mediated suppression of CYP enzymes by the Toll-like receptor 9 agonist, Tilsotolimod, in cultured human hepatocytes

Paul Tarantino, Tim Sullivan, Brian W. Ogilvie, Maciej Czerwiński Idera Pharmaceuticals, Inc., XenoTech LLC

Although not a peptide drug, it is possible that an immuno-modulator, such as the oligonucleotide, Tilsotolimod, an agonist of toll-like receptor 9 designed to enhance T-cell responses to tumor antigens, could precipitate drug-drug interactions.

International Journal of Toxicology 2019, Vol. 38(1) 61, P511

Tilsotolimod – mechanism of action



Tilsotolimod – cytokine release

Cutokino	Treatment				
Cytokine —	Saline		Tilsotolimod	Tilsotolimod	
pg/mL	Sainte	LPS	10 µg/mL	100 μg/mL	
IP-10	350	25000*	22000	5700*	
MCP-1	6800	1600*	11000	12000*	
MIP-1α	730	ALQ	990	2500*	
Interleukin-2	0.33	1.2*	0.37	0.42	
Interleukin-6	140	8400*	160	64	
Interleukin-12p70	2.7	74*	2.7	2.0	
TNF-α	16	3600*	20	43*	
IFN-α2a	BLQ	0.33	170	490*	

*Statistically different from saline control

Tilsotolimod – suppression of CYP1A2 activity

Tilsotolimod – suppression of CYP2B6 activity

Tilsotolimod - conclusions

- Agonists of Toll-like receptors 4 and 9 produce different cytokine stimulation profiles
- Tilsotolimod suppressed CYP1A2 and CYP2B6 enzyme activities in a cytokine-mediated way. Drug did not have direct effects on CYP1A2, 2B6 or 3A4

Overall conclusions

- Cytokine release by PBMCs, Kupffer cells, etc. should be accounted for and XenoTech method incorporates the effects of these molecules
- Presented cases have demonstrated utility of the in vitro study design
- Current regulatory guidance is minimal FDA solicited comments for a new guidance document

Thank You Comments or Questions?

mczerwinski@xenotechllc.com

www.xenotech.com

Featuring publications, posters, webinars and other useful resources.

Webinar Topic Request Form:

www.xenotech.com/scientific-resources/upcoming-webinars

XenoTech's Services & Products:

In Vitro ADMET PK & DDI

- Drug Transport
- Drug Metabolism
- Enzyme Inhibition & Induction
- Protein Binding
- Metabolite Identification
- ADME Screening
- Toxicology

In Vivo ADME/PK & Distribution

- QWBA
- Microautoradiography
- Excretion / Mass Balance
- Tissue Distribution
- Blood / Plasma & Lymphatic Partition Rate

Bioanalytical Pharmacology

In Vitro Ligand Binding & Radioreceptor Assays
 Immunoassays

Chemical Synthesis

- Radiolabeled Synthesis
- Metabolite Synthesis
- Peptide Synthesis

Consulting...

Cellular Products

- Hepatocytes (Cryo/Fresh, Genotyped...)
- Non-Parenchymal Cells (Kupffer Cells)

Subcellular Fractions

- Liver Microsomes
- S9 Fractions
- Cytosol
- Homogenate
- Lysosomes & Tritosomes
- Mitochondria
 Extrahepatic Fractions

Custom Products

Various Species, Tissues & Preparations

Research Biobank • Normal & Diseased Tissue Samples Recombinant Enzymes

Substrates & Metabolites

Metabolite Production Kits

JCRB Cell Lines...

EXPERTISE • EFFICIENCY • SUPPORT • PRECISION

info@xenotechllc.com

EXPERTISE • EFFICIENCY • SUPPORT • PRECISION

Thank You!