

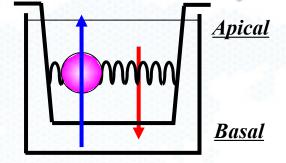
XENOTECH A BiolVT Company

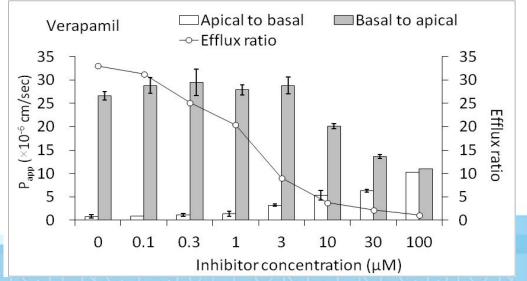
> PROVEN GLOBAL CONTRACT RESEARCH EXPERTISE FROM DISCOVERY THROUGH CLINICAL SUPPORT

Understanding P-gp and BCRP Inhibition Assay Design and Outcomes

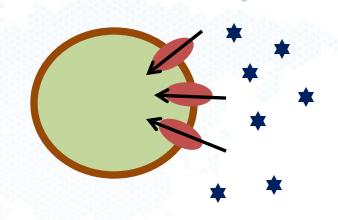
Andrea Wolff XenoTech Services Logistics Division Director

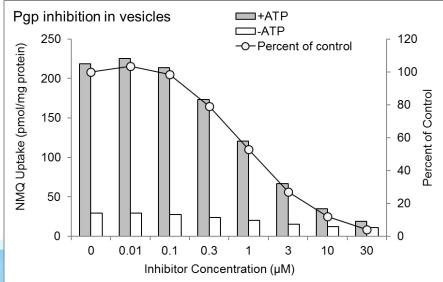
Presentation outline


- P-gp and BCRP assays
- Test system qualification
- Test system comparison
- IC₅₀ versus K_i
- Clinical relevance


P-gp and BCRP Transwell assays

- Test system: Polarized cells grown on transwell plates
- P-gp and BCRP pump in basal to apical direction. Restrict permeation in apical to basal direction.
- Substrate: Measure bidirectional permeability of test article across cells
- Inhibition: Measure effect of test article on bidirectional permeability of probe substrate
- P-gp test systems: Caco-2 or MDCKII-P-gp
- BCRP test system: MDCKII-BCRP
- Efflux ratio = Papp B to A ÷ Papp A to B


Example inhibition data

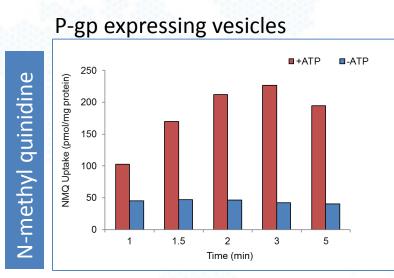


P-gp and BCRP Vesicle assays

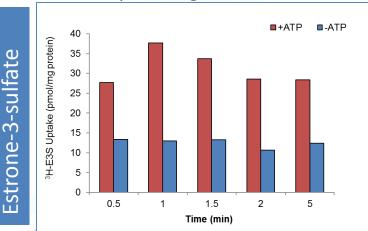
- **Test system:** Inverted plasma membrane vesicles, from cells over expressing transporter
- **Substrate:** Measure accumulation of test article in transfected vesicles ± ATP
- Inhibition: Measure effect of test article on accumulation of probe substrate ± ATP
- Used for other efflux transporters (e.g., BSEP, MRPs)

Example inhibition data

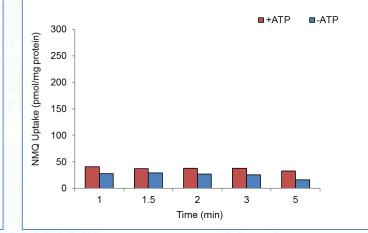
Advantages/Disadvantages

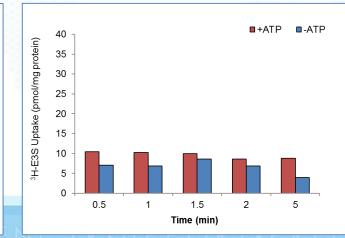

Test system	Advantages	Disadvantages
Transwell	 Measure permeability and bidirectional transport Stably transfected cells lines Consistent transporter activity 	 Endogenous transporter activity Measure recovery Non-specific binding Cytotoxicity Kinetics determinations are complicated Long culture time (21 days for Caco-2) Longer incubation times (up to 120 min)
Vesicles	 Not limited by cytotoxicity Readily available Short incubation times (<10 min) Direct access to transporter binding site Kinetics determinations are easy (similar to microsomes) 	 Not useful for highly permeable compounds Non-specific binding Transporter activity can vary from batch to batch (kinetics determination with each batch)

Brower, et al. Clin Pharmacol Ther 2013

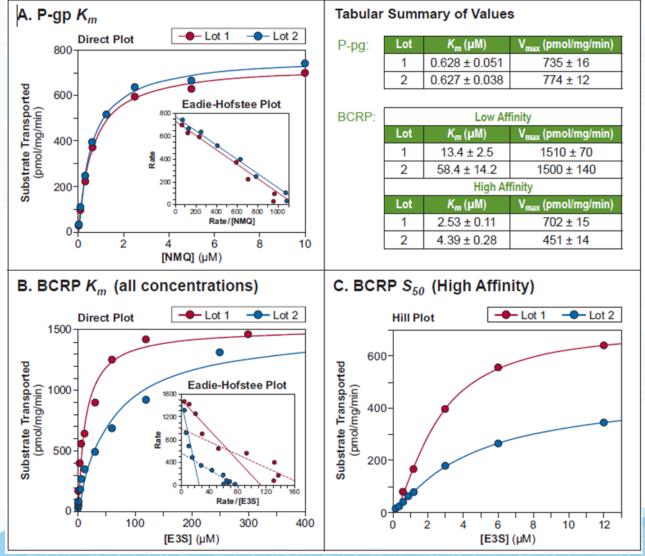


Vesicle assay qualification

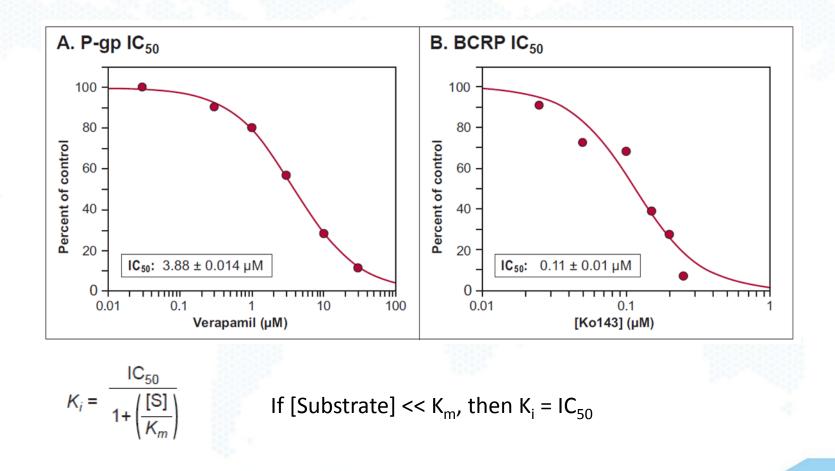

Step 1: Time course determination


BCRP expressing vesicles

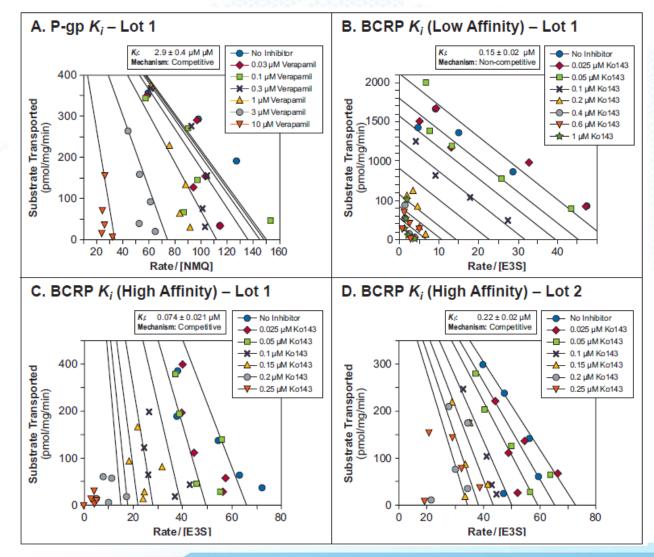
Control vesicles


Control vesicles

Vesicle assay qualification


Step 2: Kinetics determination

Vesicle assay qualification

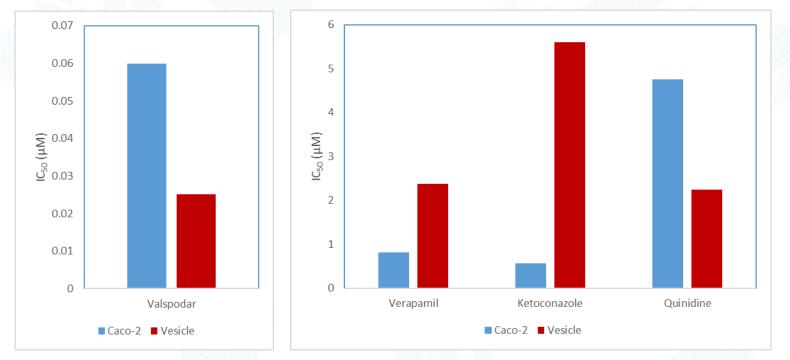

Step 3: IC₅₀ determination (positive control inhibitor)

EXPERTISE*EFFICIENCY*SUPPORT*PRECISION

K_i determinations

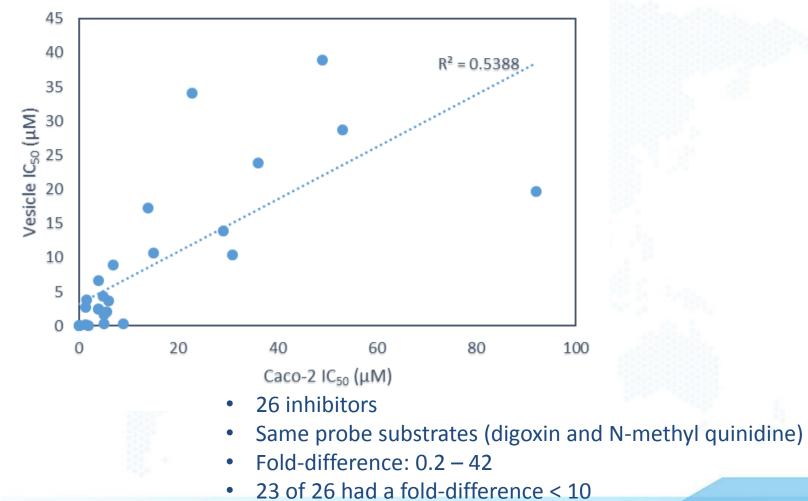
P-gp: Estimated $K_i = 2.6 \mu M$ Determined $K_i = 2.9 \mu M$ (competitive fit)

BCRP: All concentrations Estimated $K_i = 0.10 \mu M$ High affinity Estimated $K_i = 0.079 \mu M$


Low affinity (lot 1) Determined $K_i = 0.15 \mu M$ High affinity (lot 1) Determined $K_i = 0.079 \mu M$ High affinity (lot 2) Determined $K_i = 0.22 \mu M$

EXPERTISE*EFFICIENCY*SUPPORT*PRECISION

P-gp test system comparison


Internal data

Inhibitor	Сасо-2 IC ₅₀ (µМ)	Vesicle IC ₅₀ (µM)	Fold difference
Valspodar	0.0599	0.0252	0.4
Verapamil	0.814	2.37	2.9
Ketoconazole	0.562	5.60	10
Quinidine	4.75	2.24	0.5

A BiolVT Company

P-gp test system comparison External data (UW Drug Interaction Database)

Regulatory agencies: Transporter inhibition – Cutoffs for clinical DDIs

Transporter expression	EMA criteria	Relevant concentration	FDA criteria	Relevant concentration
P-gp, BCRP intestinal	<i>K</i> _i < 0.1×dose/250 mL	0.1 × dose/250 mL	I _{gut} /IC ₅₀ is ≥ 10	0.1 × dose/250 mL
P-gp, BCRP systemic	P-gp, BCRP systemic $K_i \le 50 \times \text{unbound } C_{\text{max}}$		Not appli	cable
OATP1B1, OATP1B3 (hepatic uptake)	50 × unbound C_{max} for iv drugs or $K_i \le 25 \times [I]_{u, in, max}$	50 × unbound C _{max} of iv drugs or 25 × [I] _{u, in, max}	R ≥ 1.1 (equivalent to 10 × f _{u,p} x I _{in,max})	10 × f _{u,p} x I _{in,max}
OAT1, OAT3, OCT2 (renal uptake)	$K_{\rm i} \le 50 imes$ unbound $C_{\rm max}$	50 × unbound C_{max}	$I_{max,u}/IC_{50} \text{ is } \ge 0.1$ (equivalent to $IC_{50} \le 10 \times U$ unbound C_{max})	10 × unbound C_{max}
MATE1, MATE2-K	$K_{\rm i} \le 50 imes$ unbound $C_{\rm max}$	50 × unbound C_{max}	$I_{max,u}/IC_{50}$ is ≥ 0.02 (equivalent to $IC_{50} \le 50 \times$ unbound C_{max})	50 × unbound $C_{\rm max}$

IN VITRO ADMET & PHARMACOLOGY

Clinical relevance

Compound	IC ₅₀ (μM) in P-gp vesicles	Dose	C _{max} (μM)	Fraction unbound	[I] ₂ /IC ₅₀ (≥10)	Unbound C _{max} /IC ₅₀ (≥0.02)
Ketoconazole	5.6	400 mg qd 4 days	2.82	0.032	541	0.016
Clarithromycin	8.9	500 mg bid 7 days	3.12	0.028	301	0.10
Ritonavir	0.24	100 mg bid 15 days	3.50	0.02	2332	0.29
Itraconazole	0.048	100 mg bid 4 days	4.34	0.036	11860	0.87

- Recommended CYP3A4/5 inhibitors for DDI studies (FDA and EMA)
- Also inhibit P-gp, as well as other transporters

Vermeer LMM, Isringhausen CD, Ogilvie BW, Buckley DB (2015) Evaluation of ketoconazole and its alternative clinical CYP3A4/5 inhibitors as inhibitors of drug transporters: The in vitro effects of ketoconazole, ritonavir, clarithromycin, and itraconazole on 13 clinically-relevant drug transporters. DMD: 44 (3) 453-459.

Clinical relevance

Example: Ketoconazole

	IC ₅₀ (μM) in P-gp vesicles	Dose	C _{max} (μΜ)	Fraction unbound	[I] ₂ /IC ₅₀ (≥10)	Unbound C _{max} /IC ₅₀ (≥0.02)
Ketoconazole	5.6	400	2.82	0.032	541	0.016

In vivo inhibition (P-gp and CYP3A4):

- 26 compounds listed in UW Drug Interaction Database with inhibition > 20%
- 1 compound listed with no inhibition (lenvatinib)

Co-administered drugDoseIncrease in AUC (%)Ref.Alisporivir600 mg687Barve, et al. Clin Pharmacol Drug Dev 2015Fexofenadine120 mg174FDA NDA 1996Apixaban10 mg98.8Frost et al. Br J Clin Pharmacol 2015Naloxegol25 mg1141FDA NDA 2014Venetoclax50 mg540FDA NDA 2016Voclosporin0.4 mg/kg1713Ling et al. Br J Clin Pharmacol 2014					
Fexofenadine120 mg174FDA NDA 1996Apixaban10 mg98.8Frost et al. Br J Clin Pharmacol 2015Naloxegol25 mg1141FDA NDA 2014Venetoclax50 mg540FDA NDA 2016		Dose		Ref.	
Apixaban10 mg98.8Frost et al. Br J Clin Pharmacol 2015Naloxegol25 mg1141FDA NDA 2014Venetoclax50 mg540FDA NDA 2016	Alisporivir	600 mg	687	Barve, et al. Clin Pharmacol Drug Dev 2015	
Naloxegol25 mg1141FDA NDA 2014Venetoclax50 mg540FDA NDA 2016	Fexofenadine	120 mg	174	FDA NDA 1996	
Venetoclax50 mg540FDA NDA 2016	Apixaban	10 mg	98.8	Frost et al. Br J Clin Pharmacol 2015	
	Naloxegol	25 mg	1141	FDA NDA 2014	
Voclosporin 0.4 mg/kg 1713 <i>Ling et al. Br J Clin Pharmacol 2014</i>	Venetoclax	50 mg	540	FDA NDA 2016	
	Voclosporin	0.4 mg/kg	1713	Ling et al. Br J Clin Pharmacol 2014	

Conclusions

- Qualified assays are utilized
- Some variability between vesicle lots, recommend K_m determinations
- K_i can be predicted from IC₅₀
- Results between Caco-2 and vesicles can be similar, but there is notable variability
- In vitro data are useful for predicting interactions

www.xenotech.com

Featuring publications, posters, webinars and other useful resources.

Webinar Topic Request Form:

www.xenotech.com/scientific-resources/upcoming-webinars

XenoTech's Services & Products:

In Vitro ADMET PK & DDI

- Drug Transport
- Drug Metabolism
- Enzyme Inhibition & Induction
- Protein Binding
- Metabolite Identification
- ADME Screening
- Toxicology

In Vivo ADME/PK & Distribution

- QWBA
- Microautoradiography
- Excretion / Mass Balance
- Tissue Distribution
- Blood / Plasma & Lymphatic Partition Rate

Bioanalytical Pharmacology

In Vitro Ligand Binding & Radioreceptor Assays
 Immunoassays

Chemical Synthesis

- Radiolabeled Synthesis
- Metabolite Synthesis
- Peptide Synthesis

Consulting...

Cellular Products

- Hepatocytes (Cryo/Fresh, Genotyped...)
- Non-Parenchymal Cells (Kupffer Cells)

Subcellular Fractions

- Liver Microsomes
- S9 Fractions
- Cytosol
- Homogenate
- Lysosomes & Tritosomes
- Mitochondria
 Extrahepatic Fractions

Custom Products

Various Species, Tissues & Preparations

Research Biobank • Normal & Diseased Tissue Samples Recombinant Enzymes

Substrates & Metabolites

Metabolite Production Kits

JCRB Cell Lines...