HOW DO I SELECT THE RIGHT SPECIES FOR MY TOXICOLOGY PROGRAM?

Presented by:

Scott E. Boley, PhD, DABT Sinclair Research Andrew Taylor, PhD XenoTech

Meet Our Presenters

Scott E. Boley, PhD, DABT Senior Vice President of Research, Sinclair Research

Andrew Taylor, PhD Manager, Technical Support for Services, XenoTech

Conducting Nonclinical Toxicology Studies

- How do you know which species to use?
 - Six commonly used species
 - Each have their own concerns
 - Growing concerns around use of NHPs
 - Recently concerns over the use of dogs
- Selection of a species for determining the safety profile of your program should be based on scientific rationale

How do I Know Which Species Is Right for My Program?

• The universal answer of a toxicologist - it depends

- Guidance and test article type
 - ICH S6R1 biologics
 - ICH M3 (R2) small molecules
- Dose route
 - Dermal indications

Biologics

• Based on pharmacology

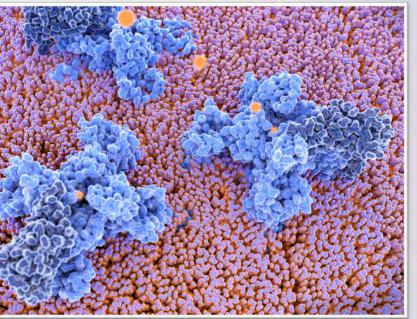
- Does the test article produce the desired pharmacological effect
- Tiered approach
 - Conservation of target sequence
 - In vitro receptor binding/engagement
- Primarily involves NHP
 - Can involve rodent as well

Small Molecules

- Still a major class of test articles in development
- Many programs are conducted using rat and dog
- How do companies know they are using the correct species?
 - Are efforts to reduce/eliminate the use of NHPs or dogs
 - There is a scientific approach to justifying the species
- For small molecules it is all about metabolism
 - *In vitro* approaches using microsomes or hepatocytes
 - Look at human, mouse, rat, dog, minipig, and NHP
 - Use the rodent and nonrodent that cover human

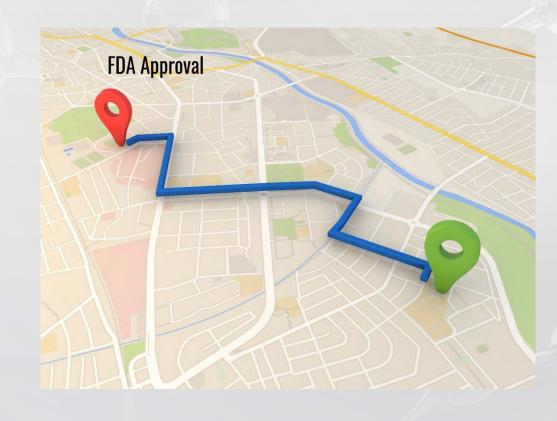
Small molecules

- What if the profiles are comparable?
 - Pharmacology
 - Sensitivity
 - Exposure
- Bottom line is the selection of the species to be used should be based on science


Small Molecules

- Selection sounds straightforward but how exactly is metabolic profiling conducted
 - Are microsomes better than hepatocytes?
 - Do you need all the species?
 - How exactly is metabolic profiling accomplished?

IN VITRO DRUG METABOLISM STUDIES FOR SPECIES SELECTION



Overview

- Test systems for in vitro studies
- What is available?
- Advantages of each
- In vitro study types
- Stability
- Metabolite characterization
- Enzyme induction


Test systems for *in vitro* **studies**

Hepatocytes

- Suspension
- Attaching or pre-plated

Subcellular fractions

- Various tissue (liver, lung, skin, etc.)
- Microsomes
- S9
- Cytosol
- Other (lysosomes, tritosomes)

Hepatocytes

Suspended (4-6 hr incubation)

- Metabolic stability
- Metabolite characterization
- Medium Throughput Screening (MTS)

Attaching/plated (> 5 d incubation)

- Enzyme induction
- Metabolic stability
- Metabolite characterization
- Low turnover compounds

Non-human Hepatocytes

- Pooled from clinically-relevant species
- Long-term lot availability and reproducibility
- High enzyme activity levels
- Consistent lot-to-lot activity levels
- Used for in vitro drug metabolism studies
- Characterized using LC/MS/MS methods

Animal Species

- **Dog** Beagle
- Guinea Pig Hartley Albino
- Hamster Golden Syrian
- Minipig Gottingen
- Monkey Cynomolgus
- Mouse IGS CD-1
- Rabbit New Zealand White
- **Rat** IGS Sprague-Dawley, Wistar & Wistar Han

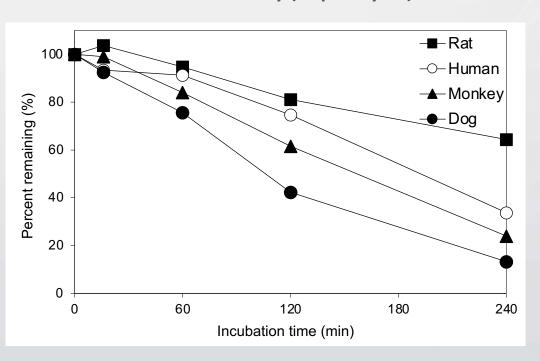
Subcellular Fractions

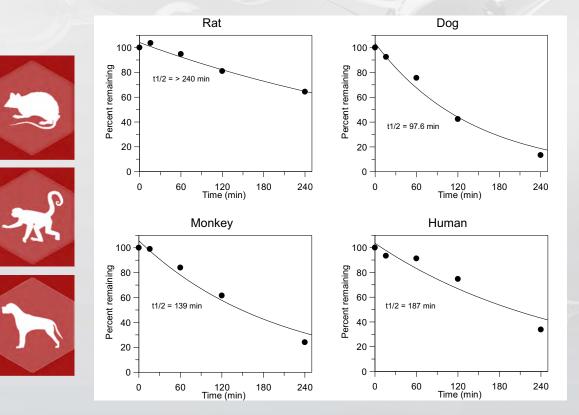
Many fractions from many tissues & species

- Microsomes
- S9
- Cytosol
- Liver, lung, skin, kidney, intestine, etc.
- Mouse, rat, mini-pig, dog, rabbit, guinea pig, hamster, monkey

Subcellular Fractions (CONTINUED)

Co-factors required for many enzymes


- E.g., NADPH for CYP, UDPGA for UGT
- Enzymes can be turned on/off by addition/omission of required co-factors



Drug Metabolism: Inter-Species Comparative Metabolism

- Design: Drug incubations with hepatocytes or subcellular fractions from various species
- Typical species: Human, Rat, Mouse, Dog, Rabbit, Monkey, Pig

sinclair

Metabolic Stability (Hepatocytes)

Drug Metabolism: Inter-Species Comparative Metabolite ID

Goals:

٠

•

٠

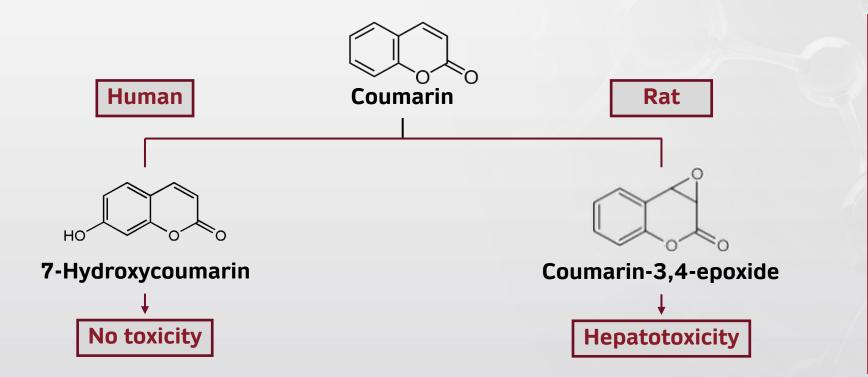
nclaii

Complete profile of

Are there human specific

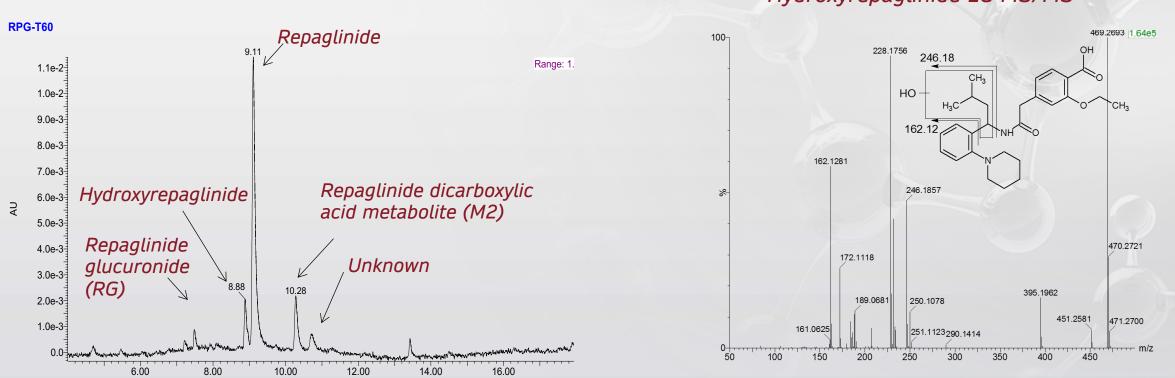
Which other species have

XENOTECH


A BioIVT Company

a similar metabolic

metabolites


metabolites?

profile?

Metabolite ID: LC-MS/MS analysis – Qualitative identification of the metabolites

50 mM Repaglinide; Human hepatocytes; 60 minutes; 37°C

Hydroxyrepaglinide LC-MS/MS

Cross-Species Met ID:

Component	Retention time (min)	Mass shift	Proposed biotransformation	Mouse	Rat	Dog	Pig	Human
C1	3.43	255.9889	Sulfation + glucuronidation	+	+	+	+	+
C2	3.63	354.0783	Di-glucuronidation + hydrogenation	+	+	+	+	+
С3	3.78	159.9135	Di-sulfation	+	+	+	+	+
C4	4.00	258.0045	Sulfation + glucuronidation + hydrogenation	+	+	+	+	+
C5	4.41	161.9298	Di-sulfation + hydrogenation	+	+	+	+	+
C6	4.44	194.0428	Glucuronidation + oxygenation + hydrogenation	ND	ND	ND	+	+

Enzyme Induction: In vitro

In vitro induction

- Induction examined in cryopreserved, characterized attaching hepatocytes
- Plated hepatocytes treated with TA for 3 days
- Only requires small amounts of TA (mg amounts)
- Mouse, rat, dog, monkey
- mRNA or enzyme activity endpoints

Enzyme Induction: Ex vivo

Ex vivo induction

- Inducted in laboratory animals
- Mouse, rat, dog, monkey
- Typically done following tox studies
- Animals dosed by sponsor and liver/tissue samples sent out
- Larger amounts of TA (depending on tox species)
- mRNA or enzyme activity endpoints

"Why conduct these studies? Is this just box checking?"

No. The information in aggregate has real utility:

1. Provide deeper understanding of the molecule

- Metabolism, enzymes involved in metabolism, etc.
- The information generated from DDI studies goes on the drug label
- From the pharma company's perspective these studies can inform go/no-go decisions for a drug candidate
- Predictive toxicology and dose selection for certain non-clinical *in vivo* studies
- **2.** Prepare for clinical studies
 - Prediction of FIH dose and DDI risk
- **3.** Satisfy regulatory expectations and comply with regulatory guidance

These studies may appear deceptively simple – maximizing insight can be complex!

Summary

- Species selection based on scientific reasoning
- Pharmacological based
- Choosing the right test system is important
 - Tox species for *in vivo*
 - Hepatocytes or subcellular for *in vitro*
- In vitro species comparisons can be useful
 - Compound stability
 - Metabolite characterization
 - Enzyme induction (in vivo follow up as needed)
- All studies are more than just box checking! The information has real utility!

