

XENOTECH OVER 25 YEARS OF GLOBAL ADME / DMPK / DDI EXPERTISE A BiolVT Company

Role of Sulfotransferases in Drug Metabolism and Drug-Drug Interactions

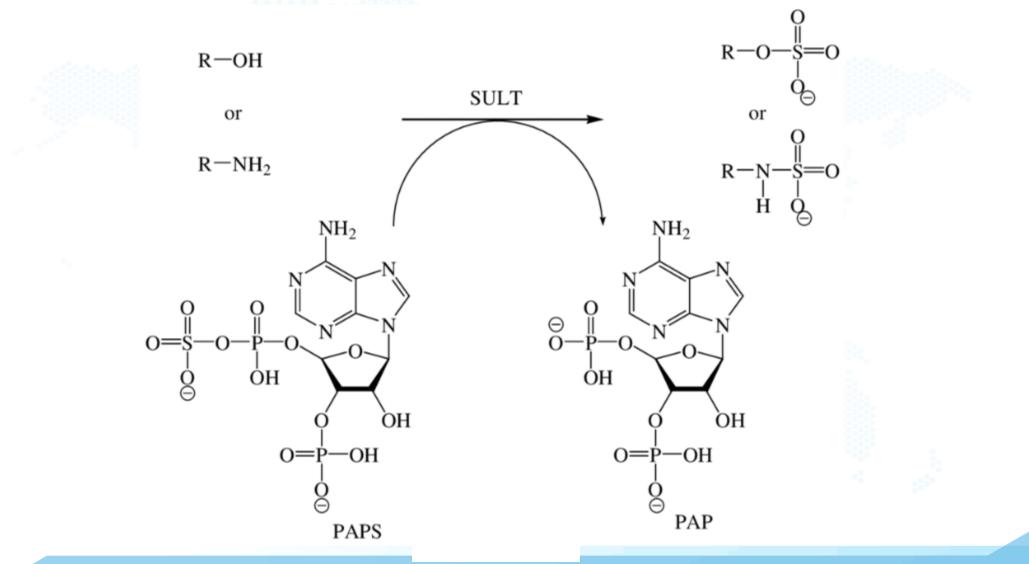
Maciej Czerwiński, Ph.D. Director, Scientific Consulting XenoTech

Non-CYP mediated metabolism series

- In Vitro Strategies for Evaluating Non-CYP Metabolism Pathways by Brian Ogilvie;
- Underprediction of Drug Clearance by Aldehyde Oxidase (AO)– Mediated Drug Metabolism: Important Considerations for In Vitro Assessment by Pallavi Limaye;
- Role of UDP-Glucuronosyltransferases (UGTs) in Drug Metabolism and Drug-Drug Interactions by Maciej Czerwiński;
- Next we will cover esterases

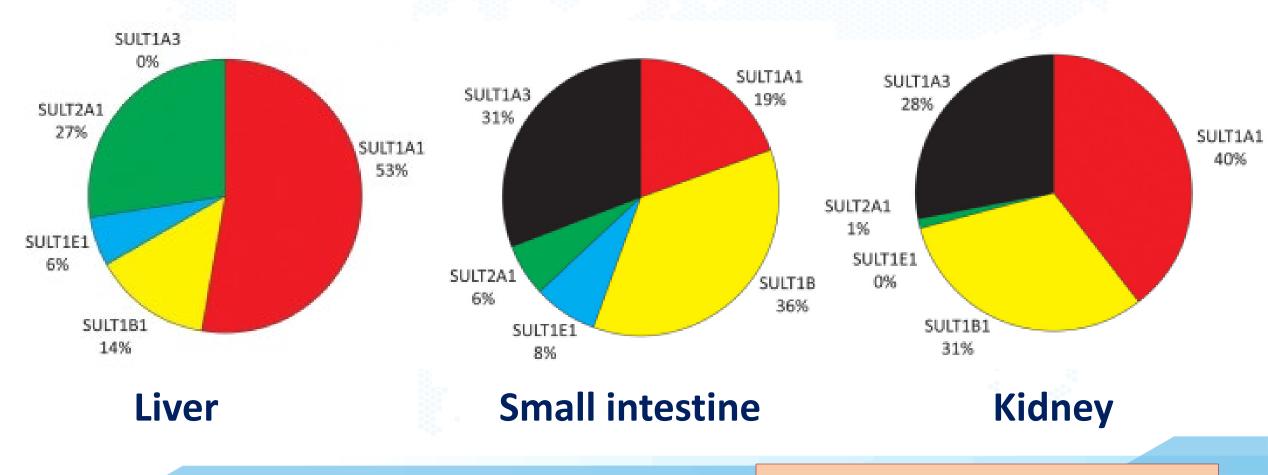
Outline of today's presentation

- Introduction to sulfotransferases
- Tissue distribution
- Contributions to drug metabolism, examples of sulfated metabolites
- SULTs in the FDA Guidance and applicable test systems


Introduction to SULT enzymes

- SULTs, expressed in a wide range of tissues, are membrane bound in the Golgi apparatus and soluble protein in the cytoplasm of liver, kidney, GI tract, lung, prostate, placenta, skin, brain, and many other tissues.
- Sulfonation reaction involves the transfer of sulfonate from the co-factor 3'-phosphoadenosine-5'-phosphosulfonate (PAPS) to the substrate. PAPS is synthesized from inorganic sulfate (SO₄²⁻) and ATP by ATP sulfurylase followed by APS kinase (adenosine phosphosulfate kinase).
- Generally, for the cytosolic enzymes, the site of sulfonation is an electron rich (nucleophilic) O or N heteroatom. The product of the reaction is a highly water-soluble acid ester.

Sulfonation reaction


XENOTECH

A BioIVT Company

A BiolVT Company

Tissues-specific expression of human sulfotransferases

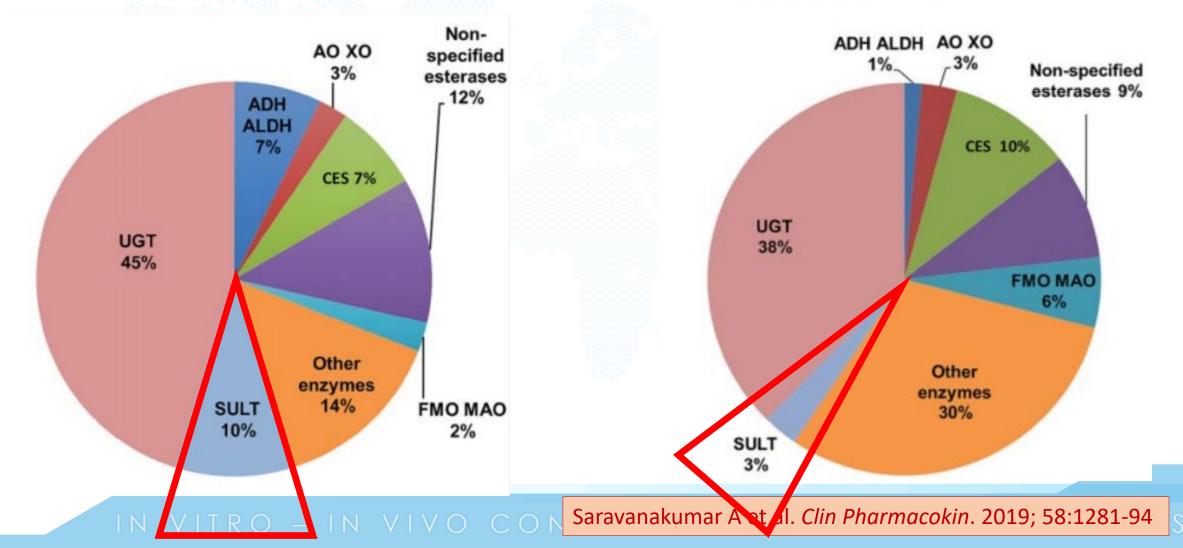
N VITRO – IN VIVO CONTRACT Riches et al., DMD 37:2255–2261, 2009

XENOTECH OVER 25 YEARS OF GLOBAL ADME / DMPK / DDI EXPERTISE A BiolVT Company Role of SULTs in homeostasis of endogenous substrates

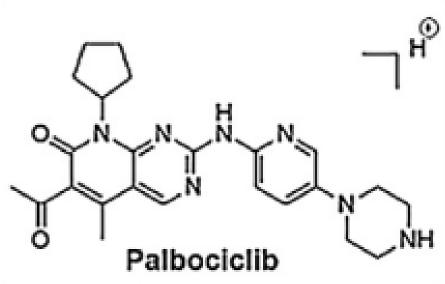
- Sulfotransferases play important roles in the sulfonation of endogenous molecules such as steroid hormones and neurotransmitters, in addition to the metabolism of xenobiotic molecules such as drugs, environmental chemicals and natural products.
- In the context of human health, it is necessary to consider the levels of expression of SULT enzymes in tissues involved in drug disposition (liver, intestine, lung, kidney, blood) or in metabolism of endogenous chemicals (gonads, adrenals, brain).

Adrenal gland	Thyroid gland	Testis	Ovaries	Endometrium	Placenta	Brain
1A1	1C2	6B1	1C4	1A1	1A1	1A1 – 4
1E1	1C3		2A1	1E1	2B1	2A1
2A1						4A1
2B1						

Parkinson et al.; Casarett & Doull's Toxicology: The Basic Science of Poisons, 2018


Drug Metab Rev, 2013; 45(4): 401–414

FDA approved drugs 2005 - 2016


Sulfonated metabolites of drugs

Most prescribed drugs

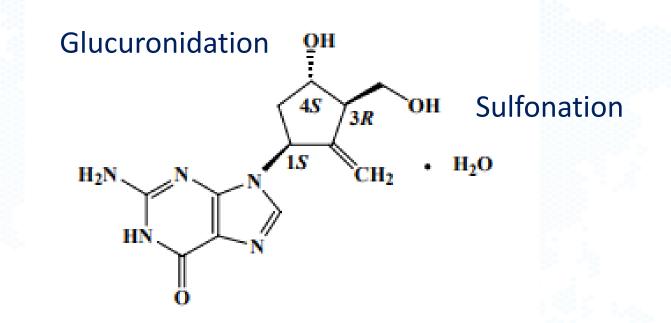
A BiolVT Company

Sulfonated metabolite of palbociclib

A BiolVT Company

XENOLE

14 primary metabolites of palbociclib are products of hydroxylation, oxidation, N-oxidation, carboxylation, carbonylation, acetylation and sulfation

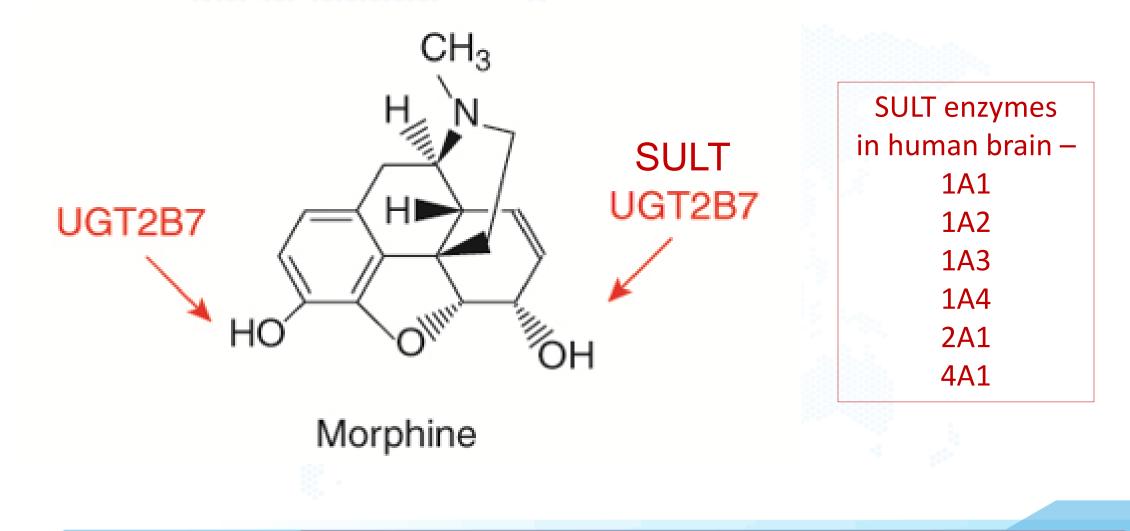

Major enzymes metabolizing this drug are CYP3A4 and SULT2A1, the second most abundant SULT in human liver. The M8 is sulfonated at the pyrazine ring

VITRO – Chavan et al. Journal of Pharmaceutical and Biomedical Analysis 157 (2018)

A BioIVT Company

XEN

Sulfonated metabolite of entecavir



Entecavir is a guanosine nucleoside analogue with selective activity against hepatitis B virus. Only a very small fraction of this drug is metabolized. No Phase I metabolites are found in vitro or in vivo. In vivo there are four major metabolites: three glucuronides and one sulfate. The sulfate was not detected in vitro and was about 15.2 % of the dose in vivo; detected only in feces.

IN VITRO – IN VIVO CONTRAC CORR Active Applications 21-797, 21-798

A BiolVT Company

O-sulfation and **O**-glucuronidation of morphine

Parkinson et al.; *Casarett & Doull's Toxicology: The Basic Science of Poisons*, 2018

SULTs in FDA Guidance on in vitro interaction studies

Is the investigational drug a substrate of metabolizing enzymes?

Phase II enzymes including UDP-glucuronosyltransferases and sulfotransferases are to be considered.

General consideration for evaluation of drug candidates SULT victim and perpetrator potential

Are SULTs the main metabolic pathway?

A BiolVT Company

Are one or more SULTs involved? Are they polymorphically expressed?

What is the likelihood of co-administration with other SULT inhibitors?

Are sulfonate conjugates pharmacologically active?

Are sulfonate conjugates chemically reactive?

A BiolVT Company

Choosing the appropriate in vitro test system

Look at the structure

Functional group	CYP?	Possible non-CYP enzymes	Test systems
Aliphatic alcohol	Yes	ADHs, UGTs, <mark>SULTs</mark>	HLM, <mark>S9</mark> , cytosol, hepatocytes
Aliphatic amine	Yes	FMOs, MAOs, UGTs, <mark>SULTs</mark> , MTs, NATs, peroxidases	HLM, <mark>S9</mark> , mitochondria, cytosol, hepatocytes
Aniline	Yes	UGTs, <mark>SULTs</mark> , NATs, peroxidases	HLM, <mark>S9</mark> , cytosol, mitochondria, hepatocytes
Phenol	Yes	UGTs, <mark>SULTs</mark> , MTs	HLM, <mark>S9</mark> , cytosol, hepatocytes, blood

In these test systems other Phase II enzymes capable of metabolizing SULT <u>substrates</u> and <u>inhibitors</u> are present, prominently UGTs.

Parkinson et al.; Casarett & Doull's Toxicology: The Basic Science of Poisons, 2018

Choosing the appropriate in vitro test system

	Human enzyme	Polymorphic?	
	SULT1A1	*1 - *4	
	SULT1A2	*1 - *6	
	SULT1A3	*1 - *4	
	SULT1B1		
	SULT1C2	*1 - *5	-
	SULT1C3		
	SULT1C4		5
	SULT1D1		
	SULT1E1		
	SULT2A1	*1 - *3	
	SULT2B1		
	SULT4A1		
\vee I T	SULT6B1		Н&

A BiolVT Company

& TEST SYSTEMS

Genetic polymorphism

X XENC

A BiolVT Company

• From a practical pharmacogenomics perspective, the most important issue for the SULTs would be the ability to identify low activity alleles that may impair normal drug and hormone metabolism. Allele frequencies for the SULTs do not correlate perfectly with function, but variant alleles with frequencies greater than 5% were uniformly associated with enzyme activities of at least 50% of wild type. More importantly, all the allozymes with enzyme activity less than half of the WT allele had allele frequencies of less than 2.5% in our combined sample.

SULT1C2*5	AA frequency	CA frequency	Activity, %WT	Protein, %WT
	0.0	0.006	0	0
	2525			

IN VITR Hildebrandt et al., *The Pharmacogenomics Journal* (2007) 7, 133–143

SULT inhibition

Reaction phenotyping

A BiolVT Company

Selected prominent inhibitors of cytosolic sulfotransferases				
Quercetin		17α-Ethynylestradiol		
Cyanidin 3-rutinos	ide	Mefenamic acid		
40-Hydroxy-3,30,4	,50-tetrachlorobiphenyl	4-Hydroxy-3-methoxymethamphetamine.		
Triclosan		Celecoxib		
		Standard substrate		
	SULT1A1	4-nitrophenol		
	SULT1A3	Dopamine		
	SULT1E1	17β-Estradiol (low nM)		
SULT2A1		Dehydroepiandrosterone		

IN VITRO – IN VIVO CONT James et al., Drug Metab Rev, 2013; 45(4): 401–414

A BiolVT Company

OVER 25 YEARS OF GLOBAL ADME / DMPK / DDI EXPERTISE

SULT induction

Nuclear receptor	SULT	Receptor activators
Constitutive androstane receptor, CAR	1A1	Phenobarbital, CITCO, TCPOBOP
Pregnane X receptor, PXR	2A1	Rifampin, hyperforin, PCBs
PPARα	2A1	Fibrates
FXR	2A1	Bile acids
Vitamin D receptor, VDR	2A1	Vitamin D ₃

SULTs are refractory or only marginally responsive to the enzyme inducing effects of 3methylcholanthrene (AhR) or phenobarbital (CAR). Induction of SULT1E1 and possibly other SULT enzymes by rifampin may be of clinical importance for oral contraceptives containing ethinyl estradiol.

A BiolVT Company

SULT1E1 in Drug Interactions Involving 17α-Ethinylestradiol

- For drug-drug interactions involving estrogen (17α-ethinylestradiol, EE)containing oral contraceptives (OC) sponsors of new molecular entities often conduct clinical studies focused on OC as victims of CYP3A induction and inhibition;
- OC such as EE are also metabolized by sulfotransferase 1E1 and UDPglucuronosyltransferase UGT1A1, expressed in the gut and liver;
- EE-containing OC can induce (e.g., UGT1A4 and CYP2A6) and inhibit (CYP1A2 ≥ CYP2C19 > CYP3A4/5 > CYP2C8, CYP2B6, CYP2D6 and CYP2C9) various CYP forms;
- It is hypothesized that EE differentially modulates CYP expression via potent agonism of the estrogen receptor expressed in the gut and liver

A BioIVT Company Considerations for assessing DDI involving EE-containing OC and NME

EE-containing OC as a victim of DDI

Considerations/Questions	Possible outcomes
Induction	
Is NME a PXR agonist and a clinically relevant CYP3A inducer?	Breakthrough bleeding
Is NME a clinically relevant inducer of UGT1A1 and/or SULTs (e.g., non-PXR	(e.g., AUCR < 0.5)
mechanism)?	
Inhibition	
Is NME a clinically relevant CYP3A inhibitor?	EE-induced CV side
Is NME a clinically relevant inhibitor of SULT1E1, other SULTs, and/or UGT1A1?	effects (e.g., AUCR
	and Cmax > 1.5)

IN VITRO – IN VIVO CONTR / D. Rodrigues, Clin Pharmacol Ther. 2021 Aug 2

A BioIVT Company Considerations for assessing DDI involving EE-containing OC and NME

EE-containing OC as a perpetrator of DDI			
Considerations/Questions	Possible outcomes		
Induction			
Is NME metabolized by UGT1A4 or CYP2A6?	Impacts NME PK		
Is NME metabolized to an active metabolite that is conjugated by UGT1A4?	Impacts metabolite PK		
Inhibition			
Is NME metabolized by CYP1A2 or CYP2C19 (fm > 0.5) with lower oral bioavailability?	Impacts NME C _{max}		
Is NME metabolized by CYP1A2 and/or CYP2C19 (fm > 0.5) but oral bioavailability >50%?	Impacts NME t _{1/2} , Cl _{sys}		
Does the NME have a narrow therapeutic index and present non-linear PK?	Impacts safety profiles		
IN VITRO - IN VIVO CONTRA <mark>D. Rodrigues, Clin Pharmacol Ther. 2021 Aug 2</mark>			

A BiolVT Company

Interplay of CAR and ER α in regulation of SULT1E1

- SULT1E1, alongside CYP3A4 (>CYP2C9) and UGT1A1, metabolizes estrogen (17α-ethinylestradiol, EE) and may contribute to DDIs involving OC.
- SULT1E1 is induced by phenobarbital treatment or spontaneously in diabetic livers *via* nuclear receptors in mice.
- Constitutive androstane receptor, following its activation by phenobarbital, binds and recruits estrogen receptor α onto the SULT1E1 promoter for subsequent phosphorylation at Ser216 and increased gene transcription.
- Although the FDA Guidance on in vitro drug interactions doesn't discuss induction of SULT enzymes, this process may be an important consideration in development of drugs co-administered with oral contraceptives.
- Estrogen, administered at low doses (~30 mg), has a C_{max} of ~ 0.2 nM, indicating that it can be a good substrate for high specificity, low capacity enzymes, such as the SULTs.
- Human SULT1E1 is induced by CITCO in hepatocytes > resveratrol in HepG2.
 Clinical Drug Interaction Studies With Combined Oral Contraceptives, FDA, 2020

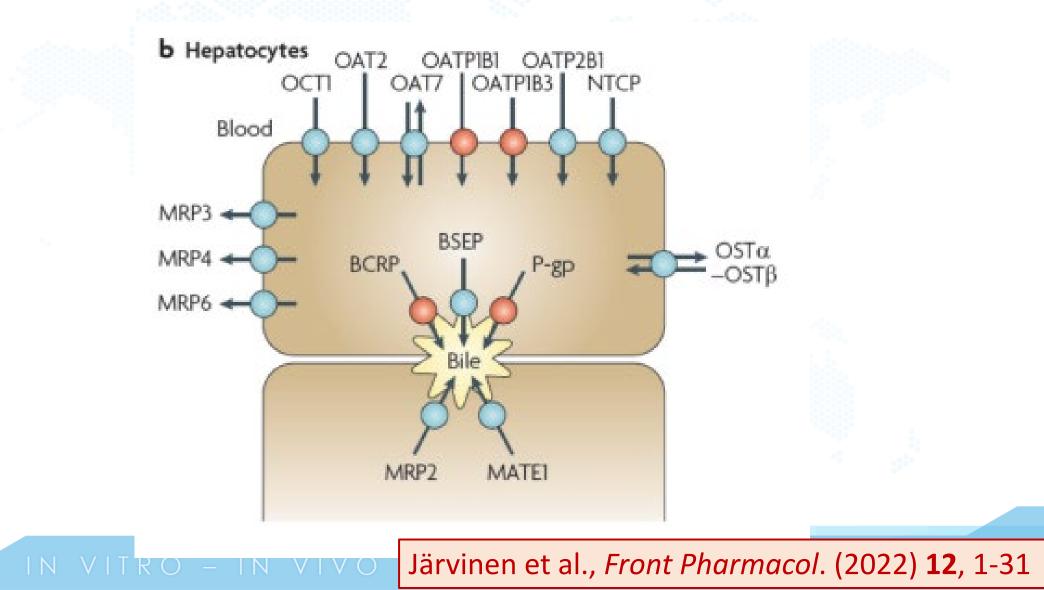
Yi et al., Sci Rep 10, 5001 (2020)

A BioIVT Company Membrane-bound SULTs in Golgi apparatus

- Responsible for sulfonation of glycosaminoglycans, proteins and peptides (potential biotransformation of future drug modalities);
- Five *N*-acetylglucosamine 6-*O*-sulfortansferases have been identified in humans. Defective sulfonation of glycosaminoglycans and proteoglycans such as heparin and chondroitin, which are important components of cartilage, was observed in brachymorpic mice which have a global defect in sulfonation. The sulfonation precedes extension of the glycosaminoglycan chain.
- Heparan sulfate enzyme, HS6OST1, determines distribution of negative charges on the molecule which in turn defines interaction of this glycosaminoglycan with proteins.

N VITRO – IN VIVO

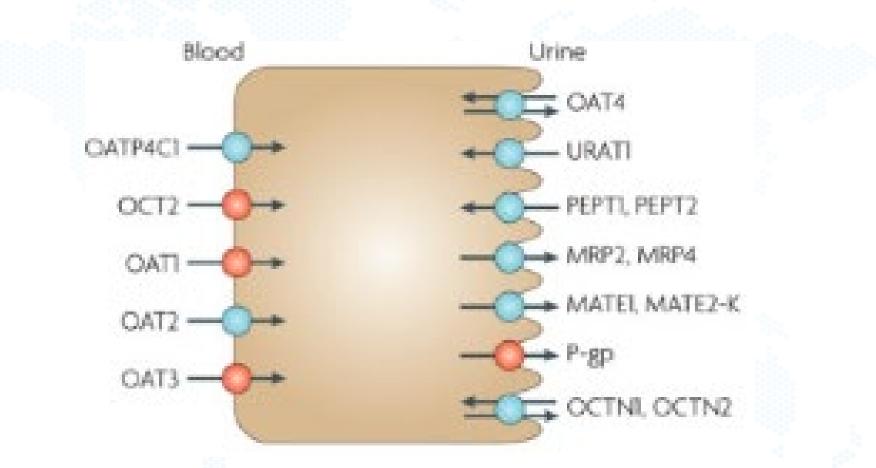
El Masri et al., *Glycoconj J* 34(3), 2017


A BiolVT Company Transporters in disposition of sulfated drugs

Drug conjugate	Uptake transporters	Efflux transporters	
Brexanolone-S	NTCP		
Cabozantinib M2a (sulfate)	OAT3, OATP1B1, OATP1B3	MRP2	
Edaravone-S	OAT1, OAT3	BCRP	
Ethinylestradiol-3-S	OAT3, OAT4 OATP1B1, OATP2B1	BCRP	
6-Hydroxymelatonin-S	OAT3		
Morinidazole-S	OAT1, OAT3		
Relebactam (sulfate)	OAT3, OAT4	MATE1, MATE2K	
Thyroxine-S Triiodothyronine-S	NTCP, OATP1B1		
Troglitazone-S	OATP1B1, OATP1B3	BCRP	
IN VITRO – IN VIVO Järvinen et al., Front Pharmacol. (2022) 12,			

A BiolVT Company

XENOTEC


Transporters in disposition of sulfated drugs

A BiolVT Company

XENOTECH

Transporters in disposition of sulfated drugs

Proximal tubule cells

IN VITRO – IN VIVO Järvinen et al., Front Pharmacol. (2022) 12, 1-31

R 25 YEARS OF GLOBAL ADME / DMP

Dogs are good glucuronidators, but cats are better sulfonators than dogs.

A BiolVT Company

Abbreviations

ADH, Alcohol dehydrogenase AhR, Aryl hydrocarbon receptor ALDH, Aldehyde dehydrogenase AO, Aldehyde oxidase APS, Adenosine phosphosulfate ATP, Adenosine triphosphate BCRP, Breast cancer resistance protein CAR, Constitutive and rostane receptor CES, Carboxyl esterase CITCO, 6-(4-Chlorophenyl)imidazo[2,1-b][1,3]thiazole-5carbaldehyde O-(3,4-dichlorobenzyl)oxime EE, 17α-Ethinylestradiol FMO, Flavin monooxygenase FXR, Farensoid X receptor GST, Glutathione S-transferase HLM, Human liver microsomes MAO, Monoamine oxidase MATE, Multidrug and toxin extrusion transporter

MRP, Multidrug resistance protein MT, Methyl transferase NME, New molecular entity NTCP, sodium/taurocholate co-transporting polypeptide OAT, Organic anion transporters OATP, Organic anion transporting polypeptide OC, Oral contraceptive PAP, 3'-Phosphoadenosine 5'-phosphate PAPS, 3'-phosphoadenosine-5'-phosphosulfate PCB, Polychlorinated biphenyl PPAR, Peroxisome proliferator-activated receptor PXR, Pregnane X receptor SULT, Sulfotransferase TCPOBOP, 1,4-Bis(3,5-Dichloro-2-pyridinyloxy)benzene UGT, UDP-glucuronosyltransferase VDR, Vitamin D receptor WT, Wild type XO, Xanthine oxidoreductase

A BiolVT Company

Thank you!