XENOTECH A BioIVT Company ADME DRUG-DRUG INTERACTION DMPK **CONTRACT RESEARCH & TEST SYSTEM EXPERTISE Cell & Tissue-Based Products Reaction Phenotyping Enzyme Induction & Inhibition Drug Transporters Metabolite ID & Production** Screening **Pharmacokinetics & QWBA** Radiolabeling **Bioanalytical**

We will begin shortly

Design Intricacies and Decision-Making Strategy for Drug-Drug Interaction Studies

Andrew G. Taylor, Ph.D. Manager of Technical Support for Services

Design Intricacies and Decision-Making Strategy for DDI Studies

6 December 2022

Andrew G. Taylor, Ph.D.

XENOTECH

Outline

- Why run these studies?
- Predominant types of *in vitro ADME* & Drug-Drug Interaction (DDI) studies & test systems
- Importance of proper study design & data interpretation
- When to conduct in vitro DDI ADME studies?
- Additional highlights and information

Regulatory Guidance

FDA: Final January 2020

In Vitro Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry

Additional copies are availablefrom: Office of Communication, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampzhire Avs., Hillandale Bldg., 4th Floor Silver Spring, MD 2093-0002 Phone: 855-543784 or 301-796-3400, Fax: 301-431-6353 Email: drugsth@fdfa.his.gov https://www.fila.gov.Drug2SubanceComplemeetEquilitor.htm

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

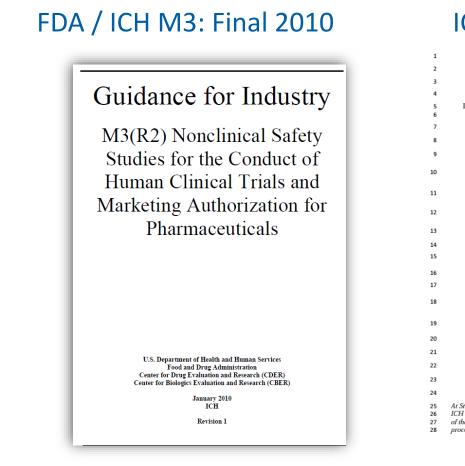
> > January 2020 Clinical Pharmacology

EMA: Final 2013

PMDA: Final 2019

事 務 連 絡 平成 31 年 2 月 8 日
各都道府県衛生主管部(局)薬務主管課 御中
厚生労働省医薬 · 生活衛生局医薬品審查管理課
「医薬品開発と適正な情報提供のための薬物相互作用ガイドライン」等の英 文版の送付について
標記について、別添1及び2のとおり取りまとめましたので、貴管下関係業者に 対して周知方お願いします。
別添1 Guideline on drug interaction for drug development and appropriate provision of information
別添2 Question and Answer for the "Guideline on drug interaction for
drug development and appropriate provision of information"

Additional Guidance


FDA "MIST": Rev 2 March 2020

Safety Testing of Drug Metabolites Guidance for Industry

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> > March 2020 Pharmacology/Toxicology

> > > Revision 2

ICH M12: Draft

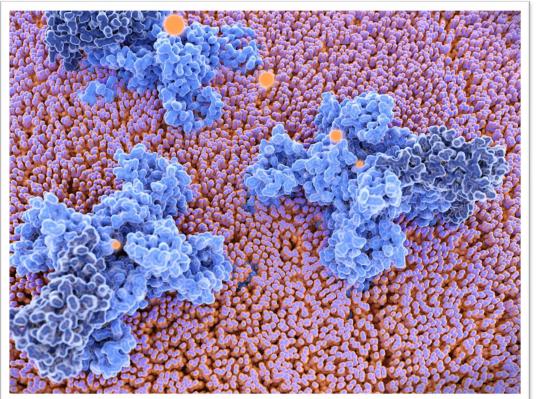
-	
3	
4	
5	INTERNATIONAL COUNCIL FOR HARMONISATION OF TECHNICAL
6	REQUIREMENTS FOR PHARMACEUTICALS FOR HUMAN USE
7	
8	
9	ICH HARMONISED GUIDELINE
10	
11	
12	DRUG INTERACTION STUDIES
13	M12
14	
15	
16	Draft version
17	Endorsed on 24 May 2022
18	Currently under public consultation
19	
20	
21	
22	
23	
24	
25 26	At Step 2 of the ICH Process, a consensus draft text or guideline, agreed by the appropriate ICH Expert Working Group, is transmitted by the ICH Assembly to the regulatory authoritie
27	of the ICH regions for internal and external consultation, according to national or regional
28	procedures.

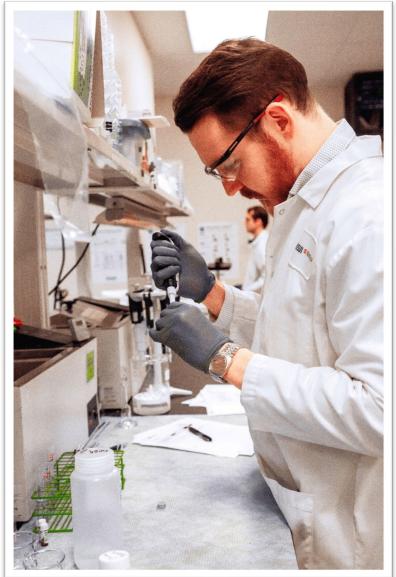
In vitro ADME & DDI study types

ADME component	Type of in vitro study
Drug Metabolism (M, E)	1. Inter-species comparative metabolism – C _{lint} & t _{1/2}
	2. Metabolite ID – Qualitative analysis of metabolite profile
	3. Reaction phenotyping – Determine which CYPs are metabolizing
Drug Metabolizing Enzymes (M, E)	1. CYP Inhibition – Profile specific CYP inhibitions
	2. CYP induction – Induction potential for specific CYPs
Drug Transporters (A, D, E)	1. Transporter substrate – Determine Transporter substrate profile
	2. Transporter inhibition – Profile specific inhibition of major Transporters

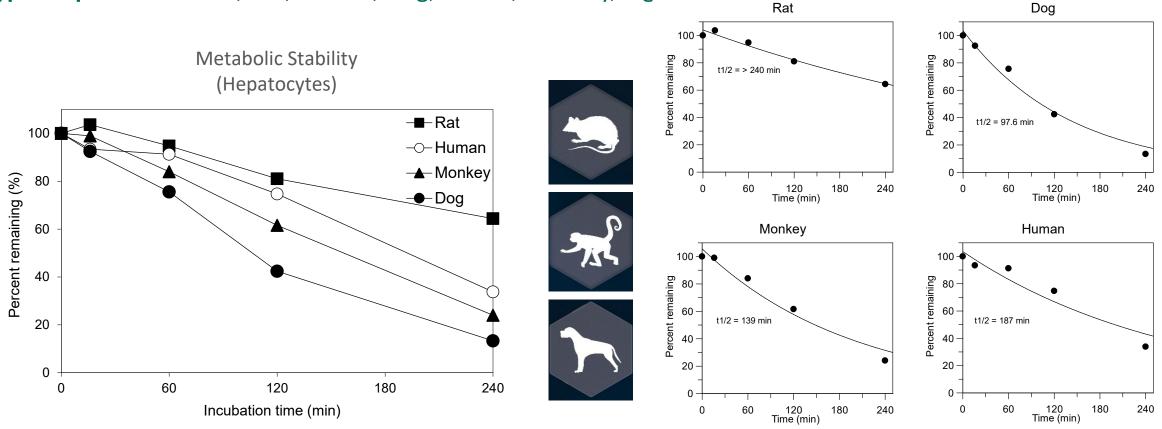
Test Systems for in vitro DDI Experiments

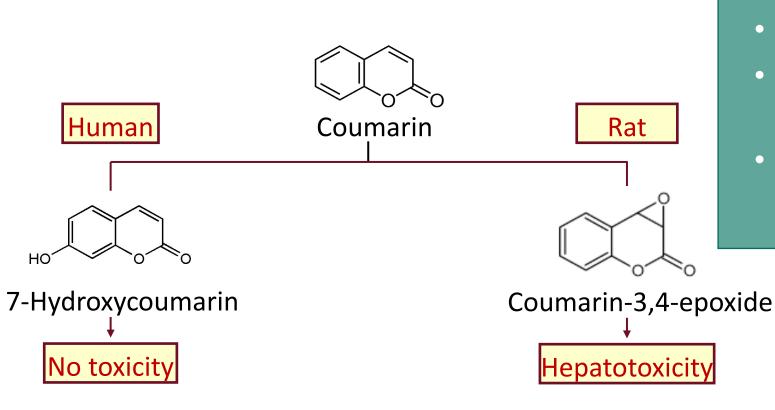
- Subcellular fractions non-living, cell/tissue lysates that have been fractionated to enrich for certain enzyme activities.
 - **S9**


XENOTECH


- Microsomes
- Cytosol
- These subcellular fractions are derived from many relevant drug metabolizing organs/tissues. May require co-factors.
- **Cryopreserved primary hepatocytes** living, isolated directly from living liver tissue and frozen for use at a later time. From multiple small animal models and human livers.

Drug Metabolism Studies

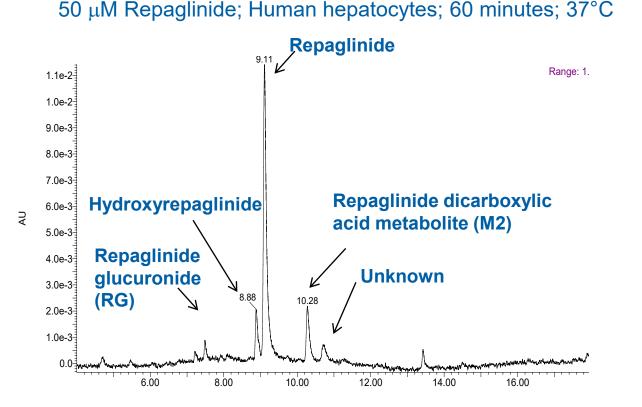



Drug Metabolism: Inter-Species Comparative Metabolism

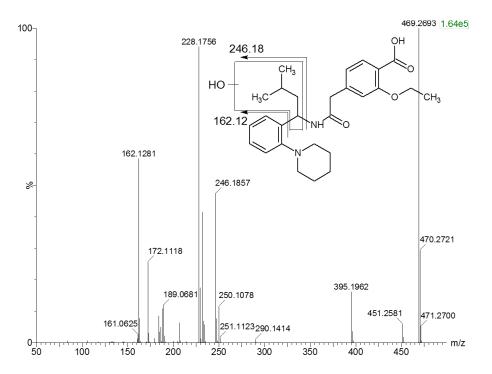
- Design: Drug incubations with hepatocytes or subcellular fractions from various species
- Typical species: Human, Rat, Mouse, Dog, Rabbit, Monkey, Pig

XENOTECH

Drug Metabolism: Inter-Species Comparative MetID



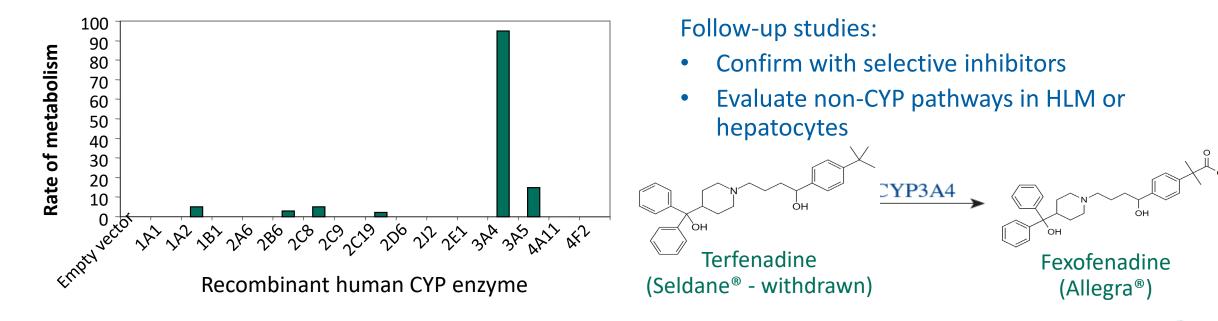
Goals:


- Complete profile of metabolites
- Are there human specific or disproportionate metabolites?
- Which other species have a similar metabolic profile?

Metabolite Characterization & ID

LC-MS/MS analysis – Qualitative identification of the metabolites

Hydroxyrepaglinide LC-MS/MS


Cross-Species Met ID

Component	Retention time (min)	Mass shift	Proposed biotransformation	Mouse	Rat	Dog	Pig	Human
C1	3.43	255.9889	Sulfation + glucuronidation	+	+	+	+	+
C2	3.63	3.63354.0783Di-glucuronidation + hydrogenation		+	+	+	+	+
С3	3.78	159.9135	Di-sulfation	+	+	+	+	+
C4	4.00	258.0045	Sulfation + glucuronidation + hydrogenation	+	+	+	+	+
C5	4.41	161.9298	Di-sulfation + hydrogenation	+	+	+	+	+
C6	4.44	194.0428	Glucuronidation + oxygenation + hydrogenation	ND	ND	ND	+	+

Drug Metabolism: CYP Reaction Phenotyping (Victim potential)

- Design: Incubate drug + recombinant human CYPs or human liver microsomes or hepatocytes ± selective inhibitors
- Goal: Determine which CYPs drive the metabolism of the drug
- Unique CYP metabolism is of concern

High DDI potential: few enzymes involved; Avoiding DDI, multiple pathways are preferred

Drug Metabolizing Enzymes (Perpetrator Potential)

Enzyme Induction

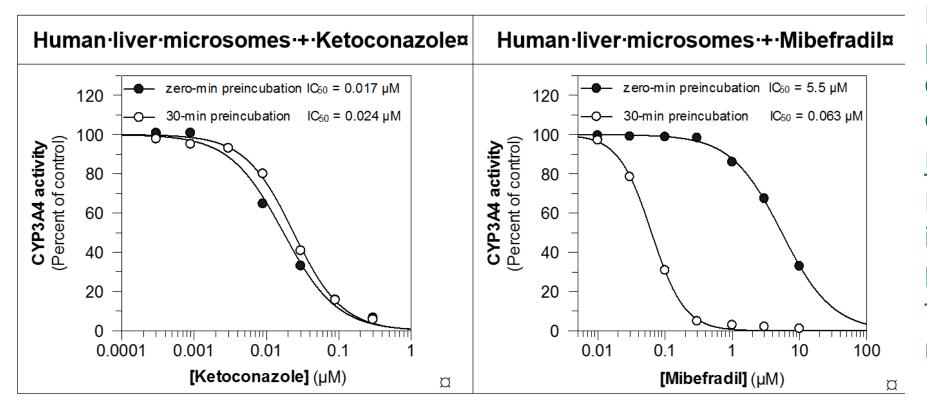
Enzyme Inhibition

Drug Metabolizing Enzymes: CYP Inhibition

Design:

Drug incubations with HLM + marker substrate ± pre-incubation

<u>Goal:</u> Predict clinically relevant inhibition of CYP enzymes

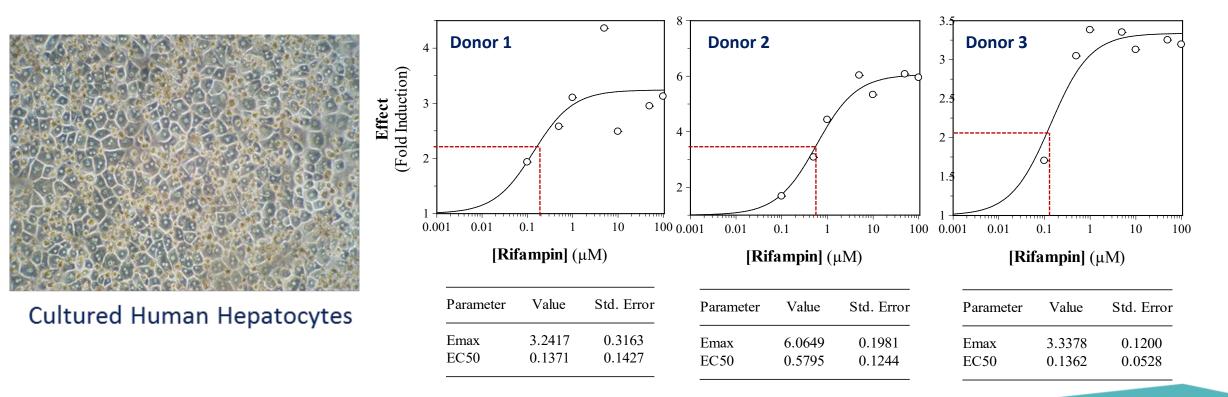

СҮР	Activity Assay
CYP1A2	Phenacetin O-dealkylation
CYP2B6	Bupropion hydroxylation
CYP2C8	Amodiaquine N-dealkylation
CYP2C9	Diclofenac 4´-hydroxylation
CYP2C19	S-Mephenytoin 4 ² -hydroxylation
CYP2D6	Dextromethorphan O-dealkylation
CYP3A4	Testosterone 6β-hydroxylation
CYP3A4	Midazolam 1'-hydroxylation

Drug Metabolizing Enzymes: CYP Inhibition

- Design: Drug incubations with HLM + marker substrate ± pre-incubation
- Goal: Assess inhibition of CYP enzymes

XENOTECH

Ketoconazole:


Potent inhibitor of 3A4 precludes coadministration of other drugs <u>Mibefradil</u> Removed from market in 1998 due to potential for fatal DDIs TDI has greater DDI risk

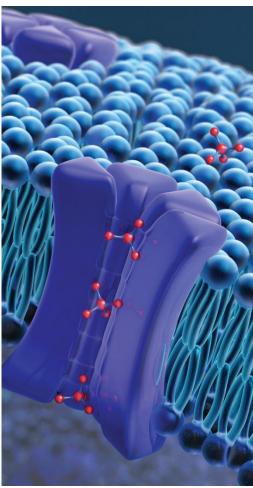
Drug Metabolizing Enzymes: CYP Induction

- Design: Drug incubations in cultured human hepatocytes, measure mRNA (or activity) of various CYPs
- Goal: Assess induction of CYP enzymes

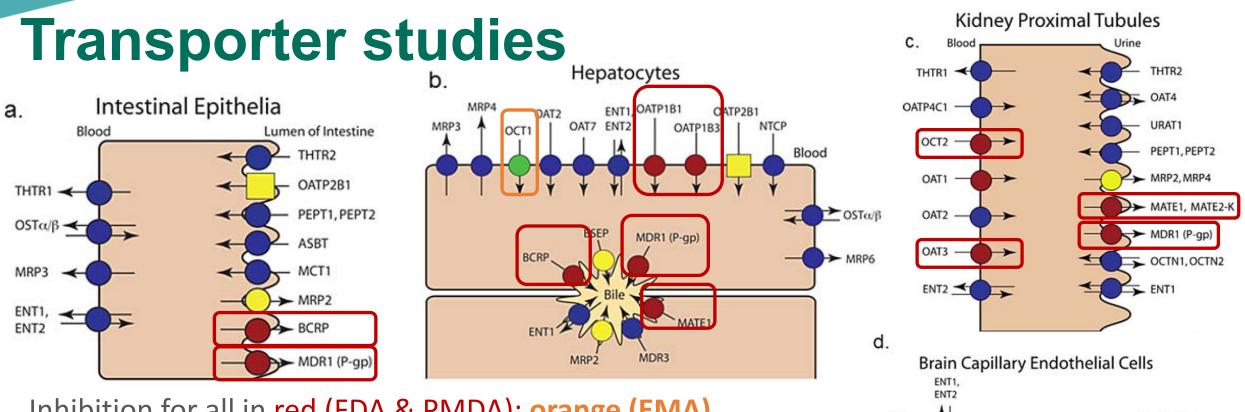
XENOTECH

• For both inhibition and induction studies, basic or mechanistic models are further utilized to determine the clinical DDI potential of a drug and requirement of a clinical DDI study.

Drug Transporters


Substrate Potential (Victim)

Transporter Inhibition (Perpetrator)


XENOTECH A BIOUT Company

"Why conduct drug transporter DDI studies?" ADME

- Drug absorption, distribution, tissue-specific drug targeting, and elimination
- Drug-drug interactions
 - Clearance of transporter substrates (Victims) can be impacted by transporter inhibitors or inducers (Perpetrators)
 - Toxicity or loss of efficacy
- Real world example Statins
 - Hepatic uptake transporter (OATPs) substrates: taken up in the liver, reduce cholesterol
 - Cyclosporine inhibits OATPs: up to 10-fold increase in statin exposure
 - Toxic side effect: rhabdomyolysis (skeletal muscles break down, cells released into bloodstream, can lead to kidney failure and possibly death)

XENOTECH

Brain

Blood

ENT2

Figures from Zamek-Gliszczynski et al. ITC3 (2018) CPT 104:890-899

Basolateral

Apical/luminal

BCRP

MRP4

<u>Inhibition</u> for all in red (FDA & PMDA); orange (EMA) <u>Substrate potential:</u>

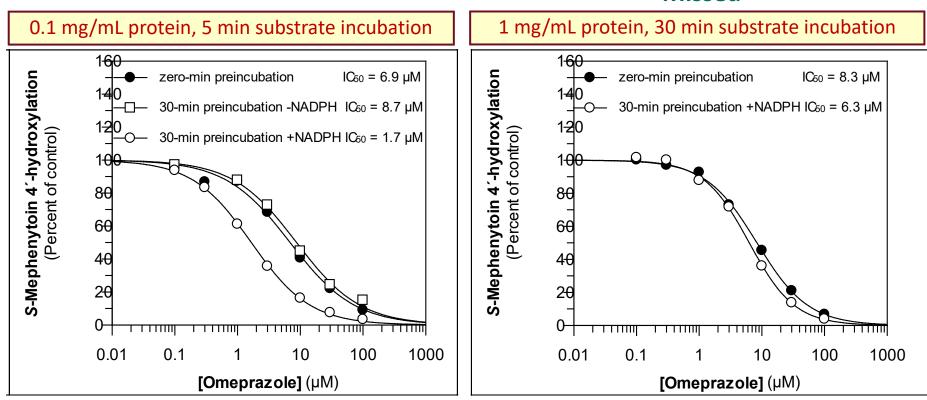
P-gp and BCRP (all orally administered drugs)

Hepatic uptake: If hepatic metabolism or biliary secretion ≥25%

Renal: If active renal secretion ≥25% of total clearance

XENOTECH A BIOLYT COMPANY

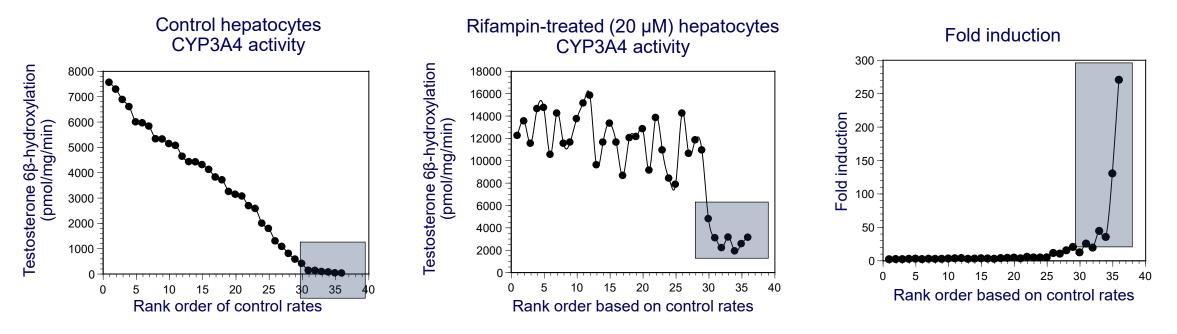
> Importance of proper study design & data interpretation for in vitro DDI studies



XENOTECH A BIOUT COMPANY

Importance of study design: CYP inhibition study

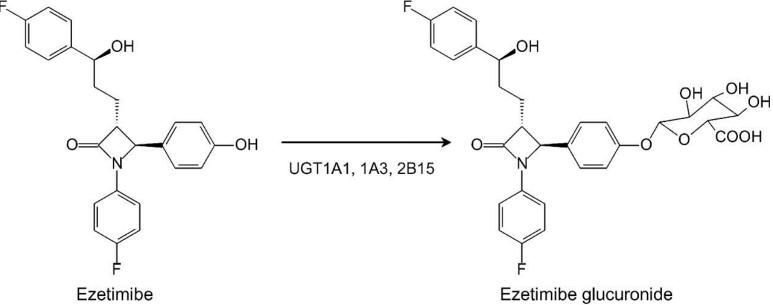
False negative results arise from poorly designed studies


Example: Clinically relevant time-dependent inhibition of CYP2C19 by omeprazole missed with high [protein] and long marker substrate incubation
 Detected

Time-dependent inhibition of CYP2C19 by omeprazole is readily detectable with HLM at 0.1 mg/mL with a 5-min substrate incubation period (left) but not at 1.0 mg/mL with a 30-min incubation period (right)

Proper test system selection: CYP Induction study

CYP induction studies: positive controls with very large induction



- When it comes to induction, more is not always better
- A high fold-induction (>20 fold) of CYP3A4 activity by rifampin is a sign of incomplete hepatocellular differentiation of the cultured human hepatocytes

Proper test system selection : Reaction phenotyping

Metabolism studies: Choose the right test system based on the structure

Ezetimibe is oxidized by CYP3A4 however results with HLM & NADPH alone can be misleading.

Oxidation does not occur clinically due to rapid phenolic glucuronidation. Recombinant human UGTs or human hepatocytes would be a better test system. CYPs are not the only enzyme system.

Timing of ADME studies

Drug Development Pipeline: Timing *in vitro* DDI studies

	Type of drug	Lead optimization	Pre-IND	Phase I to NDA
Priority depends on strategy for	Typical small molecule	 Comparative metabolism Metabolite ID Screening for others 	 CYP inhibition CYP Induction Transporter inhibition Limited transporter substrate 	 Reaction phenotyping Additional transporter substrate (dependent on routes of elimination)
each drug & need for de- risking at each stage	Small molecule with orphan, breakthrough status, etc.	1. Comparative metabolism	May be able to defer	 Metabolite ID CYP inhibition Transporter inhibition Reaction phenotyping CYP induction
Stabe	Peptides, oligos, ADCs, other biologics	May be able to defer	May be able to defer	 Metabolite ID CYP inhibition Transporter inhibition Reaction phenotyping CYP induction

"Why conduct these studies? Is this just box checking?"

No. The information in aggregate has real utility:

- 1. Provide deeper understanding of the molecule
 - Metabolism, enzymes involved in metabolism, etc.
 - The information generated from DDI studies goes on the drug label
 - From the pharma company's perspective these studies can inform go/no-go decisions for a drug candidate
 - Predictive toxicology and dose selection for certain non-clinical *in vivo* studies
- 2. Prepare for clinical studies

XENOTECH

- Prediction of FIH dose and DDI risk
- 3. Satisfy regulatory expectations and comply with regulatory guidance

These studies may appear deceptively simple – maximizing insight can be complex

For questions or further resources:

XENOTECH

How We Help **Contract Services** Test Systems

Scientific Resources About Contact Us f 🔰 in Blog | Login | Cart | 🔍


Further Resources

https://www.xenotech.com/access-adme-research-resources/

• Videos

- Webinars
- Blogs
- And more!

Scientific Resources Related to ADME, DMPK in Drug

f 🌶 in Blog | My Account | Cart | 🔍

Webinar Topic Request Form:

www.xenotech.com/scientific-resources/upcoming-webinars

XenoTech's Services & Products:

In Vitro ADME/PK & DDI

Drug Transport

XENOTECH

- Drug Metabolism
- Enzyme Inhibition & Induction
- Protein Binding
- Metabolite Identification
- ADME Screening

In Vivo ADME/PK & Distribution

- QWBA
- Microautoradiography
- Excretion / Mass Balance
- Tissue Distribution
- Blood / Plasma & Lymphatic Partition Rate

Bioanalytical Pharmacology

In Vitro Ligand Binding & Radioreceptor Assays
Immunoassays

Chemical Synthesis

- Radiolabeled Synthesis
- Metabolite Synthesis
- Peptide Synthesis

Consulting...

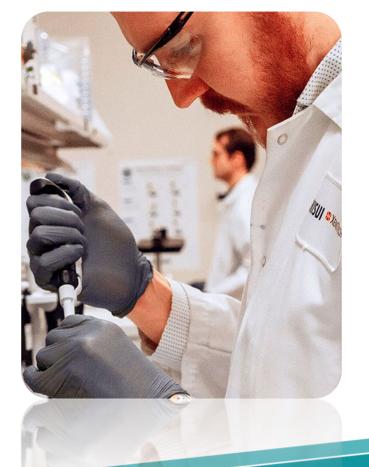
Cellular Products

- Hepatocytes (Cryo/Fresh, Genotyped...)
- Non-Parenchymal Cells (Kupffer Cells)

Subcellular Fractions

- Liver Microsomes
- S9 Fractions
- Cytosol
- Homogenate
- Lysosomes & Tritosomes
- Mitochondria
- Extrahepatic Fractions

Custom Products


Various Species, Tissues & Preparations

Research Biobank

- Normal & Diseased Tissue Samples
- **Recombinant Enzymes**

Substrates & Metabolites

JCRB Cell Lines...

