Lois Haupt, Faraz Kazmi, Brian Ogilvie, David Buckley, Brian Smith, Sarah Leatherman and Andrew Parkinson XenoTech, LLC, Lenexa KS, USA 66219

INTRODUCTION

Regulatory agencies recommend that the potential for a drug candidate to cause clinically relevant, direct inhibition of cytochrome P450 (CYP) enzymes be estimated based on the ratio of $[I]/K_i$ (or $1+[I]/K_i$) where [I] is the *in vivo* concentration of drug candidate and K_i is the dissociation constant for the enzyme-inhibitor complex for direct inhibition (US FDA, 2006). Typically, inhibition of CYP enzymes by a drug candidate is first evaluated *in vitro* by determining the concentration of drug candidate that causes 50% inhibition of a specific CYP enzyme activity (IC_{50}) using a marker substrate concentration approximately equal to $K_{\rm m}$ for the marker substrate reaction. Determining the mechanism of direct inhibition (competitive, uncompetitive, noncompetitive and mixed) and measuring the K_i value requires an *in vitro* evaluation of the effects of multiple concentrations of the drug candidate versus multiple concentrations of CYP probe substrate (the former spanning K_i and the latter spanning K_m). The Cheng-Prusoff equation (Cheng and Prusoff, 1973) allows the estimation of the K_i value from an experimentally-determined IC₅₀ value. The most conservative version of this calculation (*i.e.*, that for competitive inhibition) is shown below:

$$K_{i} = \frac{IC_{50}}{\left(\frac{S}{K_{m}} + 1\right)}$$

This equation simplifies to $K_i = IC_{50}/2$ when the substrate concentration used to measure IC_{50} is equal to the K_m for the marker substrate metabolism.

In the present study we conducted a retrospective analysis of 251 *in vitro K_i* determinations to ascertain whether the experimentally-determined K_i values could be reliably estimated by dividing the corresponding experimentally-determined IC_{50} values by two, based on the relationship that, for competitive inhibition, $K_i = IC_{50}/2$ (when [S] = K_m).

MATERIALS & METHODS

Chemicals

The CYP2B6 marker substrate efavirenz was purchased from US Pharmacopeia (Rockville, Maryland). Its metabolite, 8-hydroxyefavirenz, was purchased from Toronto Research Chemicals, Inc (Ontario, Canada). All other reagents were purchased from commercial sources described previously (Pearce et al, 1996, Parkinson et al, 2011).

Test system

Pooled human liver microsomes (n = 16, mixed gender) were prepared from nontransplantable livers and characterized at XenoTech, LLC (Lenexa, KS) as described previously (Parkinson et al, 2004, Pearce *et al*, 1996).

Incubation conditions and analytical methods

The K_i and IC₅₀ values were determined using methods consistent with guidance documents and consensus papers (US FDA, 2006, Bjornsson et al, 2004). These experiments were performed under the following conditions: (1) the concentration of CYP marker substrate was approximately equal to $K_{\rm m}$ for IC₅₀ determinations and spanned $K_{\rm m}$ for $K_{\rm i}$ determinations (*i.e.*, ranging from 0.25) times K_m to 10 times K_m , solubility permitting); (2) the substrate incubation time was 5 min or less to minimize metabolism-dependent inhibition and inhibitor depletion, and (3) the concentration of human liver microsomes was 0.1 mg/mL or less to minimize nonspecific binding and depletion of the inhibitor.

In general, incubations were conducted at 37 °C in 200- or 400-µL incubation mixtures (pH 7.4) containing potassium phosphate buffer (50 mM), MgCl₂ (3 mM), EDTA (1 mM), NADPH-generating system and human liver microsomes. Experimental conditions for assays except CYP2B6 (as measured by efavirenz 8-hydroxylation) are described in previous publications (Pearce et al, 1996, Parkinson *et al*, 2011). For CYP2B6 (as measured by efavirenz 8-hydroxylation), experiments were performed by incubating efavirenz with human liver microsomes (0.1 mg/mL) at concentrations equal to or bracketing the experimentally-determined K_m (3 μ M) for the marker substrate reaction. All reactions were initiated by the addition of NADPH-generating system and terminated by the addition of a nearly equal volume of organic solvent (*i.e.*, acetonitrile) containing the appropriate internal standard. Precipitated protein was removed by centrifugation prior to analyzing the samples by LC/MS/MS.

All analyses were performed using validated LC/MS/MS methods on an AB Sciex API 2000, 3000 or 4000 instrument (AB Sciex) with Shimadzu HPLC pumps and autosampler systems according to methods described previously (Parkinson et al, 2011). For CYP2B6 (as measured by efavirenz 8hydroxylation), the rate of 8-hydroxyefavirenz formation was quantified by LC/MS/MS using a negative electrospray ionization method monitoring mass transitions from 330 to 286 amu. The internal standard used was 8-hydroxyefavirenz- d_4 . Peak areas for all metabolites were integrated with an AB Sciex Analyst data system, and metabolites were quantified by reference to a standard calibration curve based on back calculation of a weighted (1/x), linear, least-squares regression.

IC₅₀ values were calculated using the Levenberg-Marquardt algorithm to perform non-linear regression fitting of the data. The entire data set for K_i determinations (*i.e.*, reaction rates at all concentrations of drug candidate, at all marker substrate concentrations) were fitted to the Michaelis-Menten equations for competitive, noncompetitive, uncompetitive and mixed (competitive-noncompetitive) inhibition by nonlinear regression analysis.

$\begin{array}{l} \underset{A \text{ BiolVT Company}}{\clubsuit} XENOTECH \\ from IC_{50} values for direct inhibition of CYP enzymes be reliably estimated \\ from IC_{50} values? \end{array}$

RESULTS

Figure 1 shows the distribution of the types of direct inhibition observed for 251 K_i determinations for nine different CYP enzymes as determined using pooled human liver microsomes. Nearly 96% of all compounds reviewed were found to be either mixed (competitive-noncompetitive) or competitive inhibitors of the CYP enzymes evaluated.

Figure 2 shows the distribution of assays related to CYP enzyme activity studied. CYP3A4/5 (as measured by three different marker substrate activities) was the most commonly evaluated CYP enzyme with 26% of the experiments performed.

Figure 3 illustrates the comparison of experimentally-determined K_i values versus estimated K_i values (*i.e.*, calculated by $IC_{50}/2$). Estimated and actual K_i values correlated well (Pearson product coefficient (r) = 0.944) regardless of the type of inhibition observed.

Figure 4 shows the correlation of estimated *K*_i values and experimentally-determined K_i values with respect to the mechanism of direct inhibition

CONCLUSIONS

- a Pearson product coefficient (r) of 0.944.
- IC₅₀/2.

REFERENCES

Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L, Kumar G, McLeod J, Obach RS, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D, Vega JM, Walsh J and Wrighton SA (2003) The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31:815-832. Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. *Biochem* Pharmacol 22:3099-3108. Food and Drug Administration (2006) Draft Guidance for Industry: Drug Interaction Studies—Study Design, Data Analysis, and Implications for Dosing and Labeling, pp 55, U.S. Department of Health and Human Services, Rockville, MD. Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM (2004) The effects of gender, age, ethnicity and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. *Toxic Appl Pharmacol* 199:193-209. Parkinson A, Kazmi F, Buckley DB, Yerino P, Paris BL, Holsapple J, Toren P, Otradovec SM and Ogilvie BW (2011) An Evaluation of the Dilution Method for Identifying Metabolism-Dependent Inhibitors of Cytochrome P450 Enzymes. Drug Metab and Dispos 39:1370-1387. Pearce RE, McIntyre CJ, Madan A, Sanzgiri U, Draper AJ, Bullock PL, Cook DC, Burton LA, Latham J, Nevins C and Parkinson A (1996) Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity. Arch Biochem Biophys 331:145-169.

• K_i values estimated from experimentally-determined IC₅₀ values for 251 compounds correlated well with experimentally-determined K_i values for those same compounds regardless of the type of direct inhibition observed (*i.e.*, competitive, noncompetitive, uncompetitive or mixed) yielding

The results of this retrospective analysis suggest that the K_i value for direct inhibition of CYP enzyme activity can reliably, albeit somewhat conservatively, be estimated by the formula