

Human Liver S9 Fraction – Pool of 50 Lot No. 2310054 H0610.S9

Human Liver S9 Fraction Mixed Gender, Pool of 50 Suspension medium: 50 mM Tris·HCI, 150 mM KCI, 2 mM EDTA

H0610.S90.5 mL at 20 mg/mLH0620.S91.0 mL at 20 mg/mLH0630.S95.0 mL at 20 mg/mLH0640.S950.0 mL at 20 mg/mL

| Specific Content and Enzyme Activities   |                       | Content / Rate |
|------------------------------------------|-----------------------|----------------|
| Cytochrome P450 content                  | (nmol/mg protein)     | 0.136          |
| Cytochrome b₅ content                    | (nmol/mg protein)     | 0.074          |
| 7-Ethoxycoumarin O-dealkylation          | (pmol/mg protein/min) | 183 ± 12       |
| Glucuronidation of 4-methylumbelliferone | (nmol/mg protein/min) | 31.4 ± 3.2     |
| CDNB <sup>a</sup>                        | (nmol/mg protein/min) | 471 ± 22       |

<sup>a</sup> 1-Chloro-2,4-dinitrobenzene-glutathione conjugation by glutathione S-transferase.

Values for enzyme activities were determined at a single substrate concentration and are mean ± standard deviation of three or more determinations.

To measure cytochrome P450 (CYP) activity, liver S9 samples (0.2 mg/mL) were incubated in triplicate at  $37 \pm 2^{\circ}$ C for 10 minutes in potassium phosphate buffer (50 mM, pH 7.4), containing MgCl<sub>2</sub> (3.0 mM), EDTA (1.0 mM), NADP (1.0 mM), glucose-6-phosphate (5.0 mM), glucose-6-phosphate dehydrogenase (1 Unit/mL) and 7-ethoxycoumarin (500  $\mu$ M), at the final concentrations indicated. Metabolite formation was determined by validated LC-MS/MS methods with deuterated metabolites as internal standards.

To measure UDP-glucuronosyltransferase (UGT) activity, liver S9 samples (0.1 mg/mL) were incubated in triplicate at  $37 \pm 2^{\circ}$ C for 10 minutes in Tris-HCl (100 mM, pH 7.7 at 37°C), CHAPS (0.5 mM), EDTA (1.0 mM), MgCl<sub>2</sub> (10 mM), D-saccharic acid 1,4-lactone (100  $\mu$ M), uridine diphosphate-glucuronic acid (8.0 mM) and 4-methylumbelliferone (1 mM), at the final concentrations indicated. Metabolite formation was determined by validated LC-MS/MS methods with deuterated metabolites as internal standards.

To measure glutathione S-transferase activity (GST), liver S9 samples (5 to 50  $\mu$ g/mL) were incubated in triplicate at 37 ± 2°C for 10 minutes in potassium phosphate buffer (100 mM, pH 6.5), glutathione (1 mM), and CDNB (1 mM), at the final concentrations indicated. Reaction rates are determined by photometric kinetic measurements at 340 nm.



## Store at -80°C

CAUTION: This sample should be considered as a potential biohazard and universal precautions should be followed. Intended for *in vitro* use only.

These data were generated by and are the property of XenoTech. These data are not to be reproduced, published or distributed without the express written consent of XenoTech.

This data sheet serves as a Certificate of Analysis and has been approved by Stephanie Helmstetter, Assistant Director. Signature and Date: <u>Stephanie Helmstetter</u> <u>22 March 2023</u>

Data Sheel

## **Donor Information**

| Sample | Gender | Age (Yrs) | Race             | Cause of Death           |
|--------|--------|-----------|------------------|--------------------------|
| 342    | F      | 31        | Caucasian        | Anoxia                   |
| 387    | М      | 60        | Caucasian        | Cerebrovascular Accident |
| 403    | F      | 51        | Caucasian        | Anoxia                   |
| 409    | F      | 63        | Hispanic         | Cerebrovascular Accident |
| 415    | М      | 56        | Caucasian        | Anoxia                   |
| 424    | F      | 39        | Caucasian        | Cerebrovascular Accident |
| 447    | F      | 54        | Caucasian        | Anoxia                   |
| 460    | F      | 43        | Hispanic         | Cerebrovascular Accident |
| 467    | М      | 33        | Caucasian        | Anoxia                   |
| 468    | М      | 47        | Caucasian        | Cerebrovascular Accident |
| 471    | М      | 49        | Caucasian        | Anoxia                   |
| 476    | F      | 46        | Caucasian        | Cerebrovascular Accident |
| 477    | F      | 65        | Caucasian        | Anoxia                   |
| 486    | F      | 49        | Caucasian        | Anoxia                   |
| 488    | М      | 57        | Caucasian        | Head Trauma              |
| 490    | F      | 60        | Caucasian        | Cerebrovascular Accident |
| 491    | М      | 46        | Caucasian        | Cerebrovascular Accident |
| 498    | М      | 33        | Caucasian        | Head Trauma              |
| 501    | F      | 58        | Caucasian        | Anoxia                   |
| 503    | F      | 64        | Caucasian        | Anoxia                   |
| 516    | М      | 49        | Caucasian        | Cerebrovascular Accident |
| 517    | F      | 47        | Caucasian        | Cerebrovascular Accident |
| 519    | М      | 48        | African American | Cerebrovascular Accident |
| 521    | М      | 56        | Caucasian        | Anoxia                   |
| 526    | М      | 34        | Caucasian        | Head Trauma              |
| 528    | М      | 60        | Caucasian        | Head Trauma              |
| 529    | М      | 26        | Caucasian        | Head Trauma              |
| 530    | F      | 64        | Caucasian        | Head Trauma              |
| 540    | F      | 54        | Caucasian        | Head Trauma              |
| 546    | F      | 53        | Caucasian        | Cerebrovascular Accident |
| 550    | F      | 68        | Caucasian        | Anoxia                   |
| 553    | М      | 74        | African American | Cerebrovascular Accident |
| 563    | F      | 52        | Caucasian        | Cerebrovascular Accident |
| 570    | М      | 49        | Caucasian        | Cerebrovascular Accident |
| 578    | F      | 56        | Hispanic         | Cerebrovascular Accident |
| 593    | М      | 59        | Caucasian        | Head Trauma              |
| 723    | F      | 57        | Caucasian        | Cerebrovascular Accident |
| 816    | М      | 55        | Hispanic         | Head Trauma              |
| 833    | M      | 48        | Hispanic         | Anoxia                   |
| 946    | M      | 50        | African American | Anoxia                   |
| 951    | M      | 62        | Caucasian        | Cerebrovascular Accident |
| 962    | M      | 47        | Caucasian        | Anoxia                   |
| 976    | F      | 61        | Caucasian        | Head Trauma              |
| 997    | M      | 63        | Caucasian        | Anoxia                   |
| 1005   | M      | 45        | Caucasian        | Cerebrovascular Accident |
| 1005   | 171    | +J        | Jaucasian        |                          |

These data were generated by and are the property of XenoTech. These data are not to be reproduced, published or distributed without the express written consent of XenoTech.



## **Donor Information**

| Sample | Gender | Age (Yrs) | Race      | Cause of Death           |
|--------|--------|-----------|-----------|--------------------------|
| 1020   | F      | 24        | Caucasian | Cerebrovascular Accident |
| 1068   | М      | 43        | Caucasian | Head Trauma              |
| 1106   | F      | 20        | Caucasian | Cerebrovascular Accident |
| 1124   | М      | 22        | Caucasian | Cerebrovascular Accident |
| 1155   | F      | 43        | Caucasian | Cerebrovascular Accident |

## Serology information

- Antibody to Cytomegalovirus: 27 of 50 donors tested positive, 1 donor not tested.
- RPR\*: All donors tested negative.
- HIV, HbsAg, and HCV\*\*: All donors tested negative.
- \* Rapid Plasma Reagin
- \*\* Antibody to Human Immunodeficiency Virus, Hepatitis B Surface Antigen, Antibody to Hepatitis C Virus, respectively.

These data were generated by and are the property of XenoTech. These data are not to be reproduced, published or distributed without the express written consent of XenoTech.

