0.309

 147 ± 2

Cytochrome b₅ content

NADPH-cytochrome c reductase

Human Liver Microsomes – Pool of 50

Lot No. 2310056

Human Liver Microsomes

Mixed Gender, Pool of 50

Suspension medium: 250 mM sucrose

H0610

0.5 mL at 20 mg/mL

H0620

H0630

5.0 mL at 20 mg/mL

H0640

H0640

50 0 mL at 20 mg/mL

Mixed Gender, Pool of 50 Suspension medium: 250 mM sucrose	H0630 5.0 mL at 20 H0640 50.0 mL at 20	
Specific Content and Enzyme Activities		Content / Rate
Cytochrome P450 content	(nmol/mg protein)	0.310

(nmol/mg protein)

(nmol/mg protein/min)

Enzyme	Marker Substrate Reaction	[S] (µM)	Rate (pmol/mg protein/min)
CYP1A2	Phenacetin O-dealkylation	80	363 ± 40
CYP2A6	Coumarin 7-hydroxylation	50	849 ± 34
CYP2B6	Bupropion hydroxylation	500	403 ± 36
CYP2C8	Amodiaquine N-dealkylation	20	1930 ± 110
CYP2C9	Diclofenac 4'-hydroxylation	100	2180 ± 40
CYP2C19	S-Mephenytoin 4'-hydroxylation	400	48.6 ± 5.6
CYP2D6	Dextromethorphan O-demethylation	80	228 ± 8
CYP2E1	Chlorzoxazone 6-hydroxylation	500	2190 ± 60
CYP2J2	Ebastine hydroxylation	30	307 ± 19
CYP3A4/5	Testosterone 6β-hydroxylation	250	2370 ± 120
CYP3A4/5	Midazolam 1'-hydroxylation	30	805 ± 26
CYP4A11	Lauric acid 12-hydroxylation	100	1780 ± 10
FMO	Benzydamine N-oxygenation	500	933 ± 30
UGT1A1	17β-Estradiol 3-glucuronidation	100	945 ± 64
UGT1A3	Chenodeoxycholic acid 24-glucuronidation	300	31.5 ± 0.9
UGT1A4	Trifluoperazine glucuronidation	25	736 ± 8
UGT1A6	1-Naphthol glucuronidation	500	16720 ± 1350
UGT1A9	Propofol glucuronidation	50	4550 ± 360
UGT2B7	Morphine 3-glucuronidation	1000	3490 ± 230
UGT2B17	Testosterone 17-glucuronidation	50	561 ± 37

Values for enzyme activities were determined at a single substrate concentration and are mean ± standard deviation of three or more determinations.

To measure cytochrome P450 (CYP) activity, liver microsomes (50 μ g/mL) were incubated in triplicate at 37 \pm 2°C for 10 minutes in potassium phosphate buffer (50 mM, pH 7.4), containing MgCl₂ (3.0 mM), EDTA (1.0 mM), NADP (1.0 mM), glucose-6-phosphate (5.0 mM), glucose-6-phosphate dehydrogenase (1 Unit/mL) and marker substrate, at the final concentrations indicated. Metabolite formation was determined by validated LC-MS/MS methods with deuterated metabolites as internal standards. FMO activity was measured under similar conditions except the protein concentration was 1 mg/mL and the buffer was 49 mM Tricine (pH 8.5)

To measure UDP-glucuronosyltransferase (UGT) activity, liver microsomes (10 - 250 μ g/mL) were incubated in triplicate at 37 \pm 2°C for 5 or 10 minutes in Tris-HCl (100 mM, pH 7.7 at 37°C), CHAPS (0.5 mM), EDTA (1.0 mM), MgCl₂ (10 mM), D-saccharic acid 1,4-lactone (100 μ M), uridine diphosphate-glucuronic acid (10.0 mM) and marker substrate at the final concentrations indicated.

Store at -80°C

CAUTION: This sample should be considered as a potential biohazard and universal precautions should be followed. Intended for *in vitro* use only.

These data were generated by and are the property of XenoTech. These data are not to be reproduced, published or distributed without the express written consent of XenoTech.

This data sheet serves as a Certificate of Analysis and has been approved by Stephanie Helmstetter, Assistant Director.

Signature and Date: Stephanie Helmstetter 16 October 2023

Donor Information

Sample	Gender	Age (Yrs)	Race	Cause of Death
342	F	31	Caucasian	Anoxia
387	М	60	Caucasian	Cerebrovascular Accident
403	F	51	Caucasian	Anoxia
409	F	63	Hispanic	Cerebrovascular Accident
415	M	56	Caucasian	Anoxia
424	F	39	Caucasian	Cerebrovascular Accident
447	F	54	Caucasian	Anoxia
460	F	43	Hispanic	Cerebrovascular Accident
467	M	33	Caucasian	Anoxia
468	M	47	Caucasian	Cerebrovascular Accident
471	M	49	Caucasian	Anoxia
476	F	46	Caucasian	Cerebrovascular Accident
477	F	65	Caucasian	Anoxia
486	F	49	Caucasian	Anoxia
488	M	57	Caucasian	Head Trauma
490	F	60	Caucasian	Cerebrovascular Accident
491	M	46	Caucasian	Cerebrovascular Accident
498	M	33	Caucasian	Head Trauma
501	F	58	Caucasian	Anoxia
503	F	64	Caucasian	Anoxia
516	M	49	Caucasian	Cerebrovascular Accident
517	F	47	Caucasian	Cerebrovascular Accident
519	M	48	African American	Cerebrovascular Accident
521	М	56	Caucasian	Anoxia
526	M	34	Caucasian	Head Trauma
528	M	60	Caucasian	Head Trauma
529	M	26	Caucasian	Head Trauma
530	<u> </u>	64	Caucasian	Head Trauma
540	<u> </u>	54	Caucasian	Head Trauma
546	<u> </u>	53	Caucasian	Cerebrovascular Accident
550	F	68	Caucasian	Anoxia
553	<u> </u>	74	African American	Cerebrovascular Accident
563	F	52	Caucasian	Cerebrovascular Accident
570	M	49	Caucasian	Cerebrovascular Accident
578	F	56	Hispanic	Cerebrovascular Accident
593	M	59	Caucasian	Head Trauma
723	F	57	Caucasian	Cerebrovascular Accident
816	M	55	Hispanic	Head Trauma
833	M	48	Hispanic	Anoxia
946	M	50	African American	Anoxia
951	M	62	Caucasian	Cerebrovascular Accident
962	M	47	Caucasian	Anoxia
976	F	61	Caucasian	Head Trauma
997	M	63	Caucasian	Anoxia
1005	M	45	Caucasian	Cerebrovascular Accident
1020	F	24	Caucasian	Cerebrovascular Accident

These data were generated by and are the property of XenoTech. These data are not to be reproduced, published or distributed without the express written consent of XenoTech.

Donor Information

Sample	Gender	Age (Yrs)	Race	Cause of Death
1068	М	43	Caucasian	Head Trauma
1106	F	20	Caucasian	Cerebrovascular Accident
1124	M	22	Caucasian	Cerebrovascular Accident
1155	F	43	Caucasian	Cerebrovascular Accident

Serology information

- Antibody to Cytomegalovirus: 27 of 50 donors tested positive, 1 donor not tested.
- RPR*: All donors tested negative.
- HIV, HbsAg, and HCV**: All donors tested negative.
- * Rapid Plasma Reagin
- ** Antibody to Human Immunodeficiency Virus, Hepatitis B Surface Antigen, Antibody to Hepatitis C Virus, respectively.

These data were generated by and are the property of XenoTech. These data are not to be reproduced, published or distributed without the express written consent of XenoTech.

