High-Resolution Mass Spectrometry Elucidates Metabonate (False Metabolite) Formation from Alkylamine Drugs During In Vitro Metabolite Profiling

Published:  01 October 2012

Barbara JE, Kazmi F, Muranjan S, Toren PC, Parkinson A
In vitro metabolite profiling and characterization experiments are widely employed in early drug development to support safety studies. Samples from incubations of investigational drugs with liver microsomes or hepatocytes are commonly analyzed by liquid chromatography/mass spectrometry for detection and structural elucidation of metabolites. Advanced mass spectrometers with accurate mass capabilities are becoming increasingly popular for characterization of drugs and metabolites, spurring changes in the routine workflows applied. In the present study, using a generic full-scan high-resolution data acquisition approach with a time-of-flight mass spectrometer combined with postacquisition data mining, we detected and characterized metabonates (false metabolites) in microsomal incubations of several alkylamine drugs. If a targeted approach to mass spectrometric detection (without full-scan acquisition and appropriate data mining) were employed, the metabonates may not have been detected, hence their formation underappreciated. In the absence of accurate mass data, the metabonate formation would have been incorrectly characterized because the detected metabonates manifested as direct cyanide-trapped conjugates or as cyanide-trapped metabolites formed from the parent drugs by the addition of 14 Da, the mass shift commonly associated with oxidation to yield a carbonyl. This study demonstrates that high-resolution mass spectrometry and the associated workflow is very useful for the detection and characterization of unpredicted sample components and that accurate mass data were critical to assignment of the correct metabonate structures. In addition, for drugs containing an alkylamine moiety, the results suggest that multiple negative controls and chemical trapping agents may be necessary to correctly interpret the results of in vitro experiments.

Catechol and aldehyde moieties of 3,4-dihydroxyphenylacetaldehyde contribute to tyrosine hydroxylase inhibition and neurotoxicity

Published:  30 July 2012

Lydia M. Vermeer , Virginia R. Florang , Jonathan A. Doorn

Parkinson’s disease (PD) is a progressive neurodegenerative disorder which leads to the selective loss of dopaminergic neurons. This causes a decrease in the important neurotransmitter dopamine (DA), which is essential for coordinated movement. Previous studies have implicated the monoamine oxidase metabolite of DA, 3,4-dihydroxphenylacetaldehyde (DOPAL), in the pathogenesis of PD and have shown it to be a reactive intermediate capable of protein modification. DOPAL also has demonstrated the ability to cause mitochondrial dysfunction and lead to significant inhibition of the rate-limiting enzyme in DA synthesis, tyrosine hydroxylase (TH). The current study was undertaken to investigate four analogs of DOPAL, including a novel nitrile analog, to determine how the structure of DOPAL is related to its toxicity and inhibition of TH. Both mitochondrial function and inhibition of TH in cell lysate were investigated. Furthermore, a novel whole cell assay was designed to determine the consequence to enzyme action when DOPAL levels were elevated. The results presented here demonstrate that changes to DOPAL structure lead to a decrease in toxicity and inhibition of enzyme activity as compared to the parent compound. Furthermore, the production of superoxide anion but not hydrogen peroxide increased in the presence of elevated DOPAL. These results reveal the toxicity of DOPAL and demonstrate that both the catechol and aldehyde are required to potently inhibit TH activity.

Activator Protein-1 Regulation of Murine Aldehyde Dehydrogenase 1a1

Published:  26 June 2012

N. L. Makia, I. Amunom, K. C. Falkner, D. J. Conklin, S. Surapureddi, J. A. Goldstein, and R. A. Prough

Previously we demonstrated that aldehyde dehydrogenase (ALDH) 1a1 is the major ALDH expressed in mouse liver and is an effective catalyst in metabolism of lipid aldehydes. Quantitative real-time polymerase chain reaction analysis revealed a ≈2.5- to 3-fold induction of the hepatic ALDH1A1 mRNA in mice administered either acrolein (5 mg/kg acrolein p.o.) or butylated hydroxylanisole (BHA) (0.45% in the diet) and of cytosolic NAD+-dependent ALDH activity. We observed ≈2-fold increases in ALDH1A1 mRNA levels in both Nrf2(+/+) and Nrf2(−/−) mice treated with BHA compared with controls, suggesting that BHA-induced expression is independent of nuclear factor E2-related factor 2 (Nrf2). The levels of activator protein-1 (AP-1) mRNA and protein, as well as the amount of phosphorylated c-Jun were significantly increased in mouse liver or Hepa1c1c7 cells treated with either BHA or acrolein. With use of luciferase reporters containing the 5′-flanking sequence of Aldh1a1 (−1963/+27), overexpression of c-Jun resulted in an ≈4-fold induction in luciferase activity, suggesting that c-Jun transactivates the Aldh1a1 promoter as a homodimer and not as a c-Jun/c-Fos heterodimer. Promoter deletion and mutagenesis analyses demonstrated that the AP-1 site at position −758 and possibly −1069 relative to the transcription start site was responsible for c-Jun-mediated transactivation. Electrophoretic mobility shift assay analysis with antibodies against c-Jun and c-Fos showed that c-Jun binds to the proximal AP-1 site at position −758 but not at −1069. Recruitment of c-Jun to this proximal AP-1 site by BHA was confirmed by chromatin immunoprecipitation analysis, indicating that recruitment of c-Jun to the mouse Aldh1a1 gene promoter results in increased transcription. This mode of regulation of an ALDH has not been described before.

Use of enzyme inhibitors to evaluate the conversion pathways of ester and amide prodrugs: A case study example with the prodrug ceftobiprole medocaril

Published:  01 March 2012

Gary Eichenbaum, Jennifer Skibbe, Andrew Parkinson, Mark D. Johnson, Dawn Baumgardner, Brian Ogilvie, Etsuko Usuki, Fred Tonelli, Jeff Holsapple and Anne Schmitt-Hoffmann

An approach was developed that uses enzyme inhibitors to support the assessment of the pathways that are responsible for the conversion of intravenously administered ester and amide prodrugs in different biological matrices. The methodology was applied to ceftobiprole medocaril (BAL5788), the prodrug of the cephalosporin antibiotic, ceftobiprole. The prodrug was incubated in plasma, postmitochondrial supernatant fractions from human liver (impaired and nonimpaired), kidney, and intestine as well as erythrocytes, in the presence and absence of different enzyme inhibitors (acetylcholinesterase, pseudocholinesterase, retinyl palmitoyl hydrolase, serine esterases, amidases, and cholinesterase). Hydrolysis was rapid, extensive, and not dependent on the presence of β-nicotinamide-adenine dinucleotide phosphate (reduced form) in all matrices tested, suggesting the involvement of carboxylesterases but not P450 enzymes. Hydrolysis in healthy human plasma was rapid and complete and only partially inhibited in the presence of paraoxonase inhibitors or in liver from hepatic impaired patients, suggesting involvement of nonparaoxonase pathways. The results demonstrate the utility of this approach in confirming the presence of multiple conversion pathways of intravenously administered prodrugs and in the case of BAL5788 demonstrated that this prodrug is unlikely to be affected by genetic polymorphisms, drug interactions, or other environmental factors that might inhibit or induce the enzymes involved in its conversion. © 2011 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:1242–1252, 2012